Problem s prodavačem koji putuje pomoću podružnice i veza

Problem s prodavačem koji putuje pomoću podružnice i veza

S obzirom na skup gradova i udaljenost između svakog para gradova, problem je pronaći najkraću moguću turneju koja posjećuje svaki grad točno jednom i vraća se na početnu točku.
 

Euler1


Na primjer, razmotrite grafikon prikazan na slici s desne strane. TSP turneja na grafikonu je 0-1-3-2-0. Trošak turneje je 10+25+30+15 koji je 80.
Razgovarali smo o sljedećim rješenjima 
1) Naivno i dinamično programiranje  
2) Približno rješenje pomoću MST -a
  
 
Grana i vezana otopina  
Kao što se vidi u prethodnim člancima u grani i vezanoj metodi za trenutni čvor u stablu, izračunavamo vezanu na najboljem mogućem rješenju koje možemo dobiti ako spustimo ovaj čvor. Ako je sama vezana za najbolje moguće rješenje gori od trenutnog trenutnog (najbolje izračunato do sada), tada zanemarimo podređenje ukorijenjeno s čvorom. 
Imajte na umu da trošak kroz čvor uključuje dva troškova. 
1) Trošak dostizanja čvora iz korijena (kada dođemo do čvora, izračunali smo ovaj trošak) 
2) Trošak dostizanja odgovora iz trenutnog čvora na list (izračunavamo ograničenje ovog troška kako bismo odlučili hoćemo li zanemariti subtree s ovim čvorom ili ne).
 

  • U slučajevima a Problem s maksimizacijom Gornja granica govori nam da je maksimalno moguće rješenje ako slijedimo zadani čvor. Na primjer u 0/1 Krkati koristili smo pohlepni pristup da bismo pronašli gornju granicu .
  • U slučajevima a Problem s minimiziranjem Donja veza govori nam o minimalnom mogućem rješenju ako slijedimo dani čvor. Na primjer u Problem s zadatkom Dobivamo nižu granicu tako što će radniku dodijeliti posao s najmanje troškova.


U grani i vezani izazovni dio je pronalazak načina izračunavanja veza na najbolje moguće rješenje. Ispod je ideja koja se koristi za izračunavanje granica za problem putničkog prodavača.
Trošak bilo koje turneje može se napisati kao u nastavku.
 

Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V 


Na primjer, razmotrite gornji prikazani grafikon. Ispod su minimalni trošak dva ruba u blizini svakog čvora. 
 

Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer   this   for one more example. 


Sada imamo ideju o izračunavanju donje granice. Pogledajmo kako primijeniti stablo za pretraživanje prostora. Počinjemo nabrajati sve moguće čvorove (po mogućnosti leksikografskim redoslijedom)
1. Korijenski čvor: Bez gubitka općenitosti pretpostavljamo da započinjemo s Vertexom '0' za koji je donja granica izračunata gore.
Suočavanje s razinom 2: Sljedeća razina nabraja sve moguće vrhove na koje možemo ići (imajući na umu da se na bilo kojem putu vršica mora pojaviti samo jednom) koji su 1 2 3 ... n (imajte na umu da je graf dovršen). Razmotrimo da izračunavamo za Vertex 1 jer smo se preselili s 0 na 1, naša je turneja sada uključivala Edge 0-1. To nam omogućava da napravimo potrebne promjene u donjoj granici korijena. 
 

Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1) 


Kako djeluje? Da bismo uključili Edge 0-1, dodajemo rubni trošak od 0-1 i oduzimamo rubnu težinu tako da donja granica ostaje što je moguće čvrsta, što bi bio zbroj minimalnih rubova od 0 i 1 podijeljen s 2. Jasno je da se rub oduzima ne može biti manji od ovoga.
Suočavanje s drugim razinama: Kako prelazimo na sljedeću razinu, opet nabrajamo sve moguće vrhove. Za gornji slučaj koji ide dalje nakon 1 provjerimo 2 3 4 ... n. 
Razmotrite donju granicu za 2 dok smo se premjestili s 1 na 1, uključimo rub 1-2 u turneju i izmijenimo novu donju granicu za ovaj čvor.
 

Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2) 


NAPOMENA: Jedina promjena u formuli je da smo ovaj put uvrstili drugi minimalni trošak za 1 jer je minimalni trošak ruba već oduzet na prethodnoj razini. 
 

C++
   // C++ program to solve Traveling Salesman Problem   // using Branch and Bound.   #include          using     namespace     std  ;   const     int     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.   int     final_path  [  N  +  1  ];   // visited[] keeps track of the already visited nodes   // in a particular path   bool     visited  [  N  ];   // Stores the final minimum weight of shortest tour.   int     final_res     =     INT_MAX  ;   // Function to copy temporary solution to   // the final solution   void     copyToFinal  (  int     curr_path  [])   {      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   int     firstMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     min     =     INT_MAX  ;      for     (  int     k  =  0  ;     k   <  N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]   <  min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ];      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   int     secondMin  (  int     adj  [  N  ][  N  ]     int     i  )   {      int     first     =     INT_MAX       second     =     INT_MAX  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ];      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]   void     TSPRec  (  int     adj  [  N  ][  N  ]     int     curr_bound       int     curr_weight        int     level       int     curr_path  [])   {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level  ==  N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -1  ]][  curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level  -1  ]][  i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level  -1  ])     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level  +  1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -1  ]][  i  ];      curr_bound     =     temp  ;      // Also reset the visited array      memset  (  visited       false       sizeof  (  visited  ));      for     (  int     j  =  0  ;     j   <=  level  -1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }   }   // This function sets up final_path[]    void     TSP  (  int     adj  [  N  ][  N  ])   {      int     curr_path  [  N  +  1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      memset  (  curr_path       -1       sizeof  (  curr_path  ));      memset  (  visited       0       sizeof  (  curr_path  ));      // Compute initial bound      for     (  int     i  =  0  ;     i   <  N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  &  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );   }   // Driver code   int     main  ()   {      //Adjacency matrix for the given graph      int     adj  [  N  ][  N  ]     =     {     {  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }      };      TSP  (  adj  );      printf  (  'Minimum cost : %d  n  '       final_res  );      printf  (  'Path Taken : '  );      for     (  int     i  =  0  ;     i   <=  N  ;     i  ++  )      printf  (  '%d '       final_path  [  i  ]);      return     0  ;   }   
Java
   // Java program to solve Traveling Salesman Problem   // using Branch and Bound.   import     java.util.*  ;   class   GFG   {          static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int     final_path  []     =     new     int  [  N     +     1  ]  ;      // visited[] keeps track of the already visited nodes      // in a particular path      static     boolean     visited  []     =     new     boolean  [  N  ]  ;      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Integer  .  MAX_VALUE  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int     curr_path  []  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ]  ;      final_path  [  N  ]     =     curr_path  [  0  ]  ;      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int     adj  [][]       int     i  )      {      int     min     =     Integer  .  MAX_VALUE  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i  ][  k  ]  ;      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int     adj  [][]       int     i  )      {      int     first     =     Integer  .  MAX_VALUE       second     =     Integer  .  MAX_VALUE  ;      for     (  int     j  =  0  ;     j   <  N  ;     j  ++  )      {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i  ][  j  ]      <=     first  )      {      second     =     first  ;      first     =     adj  [  i  ][  j  ]  ;      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&      adj  [  i  ][  j  ]     !=     first  )      second     =     adj  [  i  ][  j  ]  ;      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored which      // would later be copied to final_path[]      static     void     TSPRec  (  int     adj  [][]       int     curr_bound       int     curr_weight        int     level       int     curr_path  []  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )      {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !=     0  )      {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight     +      adj  [  curr_path  [  level  -  1  ]][  curr_path  [  0  ]]  ;          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level  -  1  ]][  i  ]     !=     0     &&      visited  [  i  ]     ==     false  )      {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ]  ;      // different computation of curr_bound for      // level 2 from the other levels      if     (  level  ==  1  )      curr_bound     -=     ((  firstMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      else      curr_bound     -=     ((  secondMin  (  adj       curr_path  [  level     -     1  ]  )     +      firstMin  (  adj       i  ))  /  2  );      // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  )      {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight       level     +     1        curr_path  );      }      // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level  -  1  ]][  i  ]  ;      curr_bound     =     temp  ;      // Also reset the visited array      Arrays  .  fill  (  visited    false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]       static     void     TSP  (  int     adj  [][]  )      {      int     curr_path  []     =     new     int  [  N     +     1  ]  ;      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Arrays  .  fill  (  curr_path       -  1  );      Arrays  .  fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound     +=     (  firstMin  (  adj       i  )     +      secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound  ==  1  )  ?     curr_bound  /  2     +     1     :      curr_bound  /  2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }          // Driver code      public     static     void     main  (  String  []     args  )         {      //Adjacency matrix for the given graph      int     adj  [][]     =     {{  0       10       15       20  }      {  10       0       35       25  }      {  15       35       0       30  }      {  20       25       30       0  }     };      TSP  (  adj  );      System  .  out  .  printf  (  'Minimum cost : %dn'       final_res  );      System  .  out  .  printf  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )         {      System  .  out  .  printf  (  '%d '       final_path  [  i  ]  );      }      }   }   /* This code contributed by PrinciRaj1992 */   
Python3
   # Python3 program to solve    # Traveling Salesman Problem using    # Branch and Bound.   import   math   maxsize   =   float  (  'inf'  )   # Function to copy temporary solution   # to the final solution   def   copyToFinal  (  curr_path  ):   final_path  [:  N   +   1  ]   =   curr_path  [:]   final_path  [  N  ]   =   curr_path  [  0  ]   # Function to find the minimum edge cost    # having an end at the vertex i   def   firstMin  (  adj     i  ):   min   =   maxsize   for   k   in   range  (  N  ):   if   adj  [  i  ][  k  ]    <   min   and   i   !=   k  :   min   =   adj  [  i  ][  k  ]   return   min   # function to find the second minimum edge    # cost having an end at the vertex i   def   secondMin  (  adj     i  ):   first     second   =   maxsize     maxsize   for   j   in   range  (  N  ):   if   i   ==   j  :   continue   if   adj  [  i  ][  j  ]    <=   first  :   second   =   first   first   =   adj  [  i  ][  j  ]   elif  (  adj  [  i  ][  j  ]    <=   second   and   adj  [  i  ][  j  ]   !=   first  ):   second   =   adj  [  i  ][  j  ]   return   second   # function that takes as arguments:   # curr_bound -> lower bound of the root node   # curr_weight-> stores the weight of the path so far   # level-> current level while moving   # in the search space tree   # curr_path[] -> where the solution is being stored   # which would later be copied to final_path[]   def   TSPRec  (  adj     curr_bound     curr_weight     level     curr_path     visited  ):   global   final_res   # base case is when we have reached level N    # which means we have covered all the nodes once   if   level   ==   N  :   # check if there is an edge from   # last vertex in path back to the first vertex   if   adj  [  curr_path  [  level   -   1  ]][  curr_path  [  0  ]]   !=   0  :   # curr_res has the total weight   # of the solution we got   curr_res   =   curr_weight   +   adj  [  curr_path  [  level   -   1  ]]   [  curr_path  [  0  ]]   if   curr_res    <   final_res  :   copyToFinal  (  curr_path  )   final_res   =   curr_res   return   # for any other level iterate for all vertices   # to build the search space tree recursively   for   i   in   range  (  N  ):   # Consider next vertex if it is not same    # (diagonal entry in adjacency matrix and    # not visited already)   if   (  adj  [  curr_path  [  level  -  1  ]][  i  ]   !=   0   and   visited  [  i  ]   ==   False  ):   temp   =   curr_bound   curr_weight   +=   adj  [  curr_path  [  level   -   1  ]][  i  ]   # different computation of curr_bound    # for level 2 from the other levels   if   level   ==   1  :   curr_bound   -=   ((  firstMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   else  :   curr_bound   -=   ((  secondMin  (  adj     curr_path  [  level   -   1  ])   +   firstMin  (  adj     i  ))   /   2  )   # curr_bound + curr_weight is the actual lower bound    # for the node that we have arrived on.   # If current lower bound  < final_res    # we need to explore the node further   if   curr_bound   +   curr_weight    <   final_res  :   curr_path  [  level  ]   =   i   visited  [  i  ]   =   True   # call TSPRec for the next level   TSPRec  (  adj     curr_bound     curr_weight     level   +   1     curr_path     visited  )   # Else we have to prune the node by resetting    # all changes to curr_weight and curr_bound   curr_weight   -=   adj  [  curr_path  [  level   -   1  ]][  i  ]   curr_bound   =   temp   # Also reset the visited array   visited   =   [  False  ]   *   len  (  visited  )   for   j   in   range  (  level  ):   if   curr_path  [  j  ]   !=   -  1  :   visited  [  curr_path  [  j  ]]   =   True   # This function sets up final_path   def   TSP  (  adj  ):   # Calculate initial lower bound for the root node    # using the formula 1/2 * (sum of first min +    # second min) for all edges. Also initialize the    # curr_path and visited array   curr_bound   =   0   curr_path   =   [  -  1  ]   *   (  N   +   1  )   visited   =   [  False  ]   *   N   # Compute initial bound   for   i   in   range  (  N  ):   curr_bound   +=   (  firstMin  (  adj     i  )   +   secondMin  (  adj     i  ))   # Rounding off the lower bound to an integer   curr_bound   =   math  .  ceil  (  curr_bound   /   2  )   # We start at vertex 1 so the first vertex    # in curr_path[] is 0   visited  [  0  ]   =   True   curr_path  [  0  ]   =   0   # Call to TSPRec for curr_weight    # equal to 0 and level 1   TSPRec  (  adj     curr_bound     0     1     curr_path     visited  )   # Driver code   # Adjacency matrix for the given graph   adj   =   [[  0     10     15     20  ]   [  10     0     35     25  ]   [  15     35     0     30  ]   [  20     25     30     0  ]]   N   =   4   # final_path[] stores the final solution    # i.e. the // path of the salesman.   final_path   =   [  None  ]   *   (  N   +   1  )   # visited[] keeps track of the already   # visited nodes in a particular path   visited   =   [  False  ]   *   N   # Stores the final minimum weight   # of shortest tour.   final_res   =   maxsize   TSP  (  adj  )   print  (  'Minimum cost :'     final_res  )   print  (  'Path Taken : '     end   =   ' '  )   for   i   in   range  (  N   +   1  ):   print  (  final_path  [  i  ]   end   =   ' '  )   # This code is contributed by ng24_7   
C#
   // C# program to solve Traveling Salesman Problem   // using Branch and Bound.   using     System  ;   public     class     GFG     {      static     int     N     =     4  ;      // final_path[] stores the final solution ie the      // path of the salesman.      static     int  []     final_path     =     new     int  [  N     +     1  ];      // visited[] keeps track of the already visited nodes      // in a particular path      static     bool  []     visited     =     new     bool  [  N  ];      // Stores the final minimum weight of shortest tour.      static     int     final_res     =     Int32  .  MaxValue  ;      // Function to copy temporary solution to      // the final solution      static     void     copyToFinal  (  int  []     curr_path  )      {      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      final_path  [  i  ]     =     curr_path  [  i  ];      final_path  [  N  ]     =     curr_path  [  0  ];      }      // Function to find the minimum edge cost      // having an end at the vertex i      static     int     firstMin  (  int  [     ]     adj       int     i  )      {      int     min     =     Int32  .  MaxValue  ;      for     (  int     k     =     0  ;     k      <     N  ;     k  ++  )      if     (  adj  [  i       k  ]      <     min     &&     i     !=     k  )      min     =     adj  [  i       k  ];      return     min  ;      }      // function to find the second minimum edge cost      // having an end at the vertex i      static     int     secondMin  (  int  [     ]     adj       int     i  )      {      int     first     =     Int32  .  MaxValue       second     =     Int32  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <     N  ;     j  ++  )     {      if     (  i     ==     j  )      continue  ;      if     (  adj  [  i       j  ]      <=     first  )     {      second     =     first  ;      first     =     adj  [  i       j  ];      }      else     if     (  adj  [  i       j  ]      <=     second      &&     adj  [  i       j  ]     !=     first  )      second     =     adj  [  i       j  ];      }      return     second  ;      }      // function that takes as arguments:      // curr_bound -> lower bound of the root node      // curr_weight-> stores the weight of the path so far      // level-> current level while moving in the search      // space tree      // curr_path[] -> where the solution is being stored      // which      // would later be copied to final_path[]      static     void     TSPRec  (  int  [     ]     adj       int     curr_bound        int     curr_weight       int     level        int  []     curr_path  )      {      // base case is when we have reached level N which      // means we have covered all the nodes once      if     (  level     ==     N  )     {      // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]     curr_path  [  0  ]]      !=     0  )     {      // curr_res has the total weight of the      // solution we got      int     curr_res     =     curr_weight      +     adj  [  curr_path  [  level     -     1  ]      curr_path  [  0  ]];      // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )     {      copyToFinal  (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;      }      // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )     {      // Consider next vertex if it is not same      // (diagonal entry in adjacency matrix and not      // visited already)      if     (  adj  [  curr_path  [  level     -     1  ]     i  ]     !=     0      &&     visited  [  i  ]     ==     false  )     {      int     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]     i  ];      // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  )      curr_bound      -=     ((  firstMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      else      curr_bound      -=     ((  secondMin  (  adj        curr_path  [  level     -     1  ])      +     firstMin  (  adj       i  ))      /     2  );      // curr_bound + curr_weight is the actual      // lower bound for the node that we have      // arrived on If current lower bound  <      // final_res we need to explore the node      // further      if     (  curr_bound     +     curr_weight      <     final_res  )     {      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;      // call TSPRec for the next level      TSPRec  (  adj       curr_bound       curr_weight        level     +     1       curr_path  );      }      // Else we have to prune the node by      // resetting all changes to curr_weight and      // curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]     i  ];      curr_bound     =     temp  ;      // Also reset the visited array      Array  .  Fill  (  visited       false  );      for     (  int     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;      }      }      }      // This function sets up final_path[]      static     void     TSP  (  int  [     ]     adj  )      {      int  []     curr_path     =     new     int  [  N     +     1  ];      // Calculate initial lower bound for the root node      // using the formula 1/2 * (sum of first min +      // second min) for all edges.      // Also initialize the curr_path and visited array      int     curr_bound     =     0  ;      Array  .  Fill  (  curr_path       -  1  );      Array  .  Fill  (  visited       false  );      // Compute initial bound      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      curr_bound      +=     (  firstMin  (  adj       i  )     +     secondMin  (  adj       i  ));      // Rounding off the lower bound to an integer      curr_bound     =     (  curr_bound     ==     1  )     ?     curr_bound     /     2     +     1      :     curr_bound     /     2  ;      // We start at vertex 1 so the first vertex      // in curr_path[] is 0      visited  [  0  ]     =     true  ;      curr_path  [  0  ]     =     0  ;      // Call to TSPRec for curr_weight equal to      // 0 and level 1      TSPRec  (  adj       curr_bound       0       1       curr_path  );      }      // Driver code      static     public     void     Main  ()      {      // Adjacency matrix for the given graph      int  [     ]     adj     =     {     {     0       10       15       20     }      {     10       0       35       25     }      {     15       35       0       30     }      {     20       25       30       0     }     };      TSP  (  adj  );      Console  .  WriteLine  (  'Minimum cost : '     +     final_res  );      Console  .  Write  (  'Path Taken : '  );      for     (  int     i     =     0  ;     i      <=     N  ;     i  ++  )     {      Console  .  Write  (  final_path  [  i  ]     +     ' '  );      }      }   }   // This code is contributed by Rohit Pradhan   
JavaScript
   const     N     =     4  ;   // final_path[] stores the final solution ie the   // path of the salesman.      let     final_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // visited[] keeps track of the already visited nodes   // in a particular path      let     visited     =     Array     (  N  ).  fill     (  false  );   // Stores the final minimum weight of shortest tour.      let     final_res     =     Number  .  MAX_SAFE_INTEGER  ;   // Function to copy temporary solution to   // the final solution   function     copyToFinal     (  curr_path  ){      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      final_path  [  i  ]     =     curr_path  [  i  ];      }      final_path  [  N  ]     =     curr_path  [  0  ];   }   // Function to find the minimum edge cost   // having an end at the vertex i   function     firstMin     (  adj       i  ){   let     min     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     k     =     0  ;     k      <     N  ;     k  ++  ){      if     (  adj  [  i  ][  k  ]      <     min     &&     i     !==     k  ){      min     =     adj  [  i  ][  k  ];      }      }      return     min  ;   }   // function to find the second minimum edge cost   // having an end at the vertex i   function     secondMin     (  adj       i  ){      let     first     =     Number  .  MAX_SAFE_INTEGER  ;      let     second     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     j     =     0  ;     j      <     N  ;     j  ++  ){      if     (  i     ==     j  ){      continue  ;      }      if     (  adj  [  i  ][  j  ]      <=     first  ){      second     =     first  ;      first     =     adj  [  i  ][  j  ];      }      else     if     (  adj  [  i  ][  j  ]      <=     second     &&     adj  [  i  ][  j  ]     !==     first  ){      second     =     adj  [  i  ][  j  ];      }      }      return     second  ;   }   // function that takes as arguments:   // curr_bound -> lower bound of the root node   // curr_weight-> stores the weight of the path so far   // level-> current level while moving in the search   // space tree   // curr_path[] -> where the solution is being stored which   // would later be copied to final_path[]      function     TSPRec     (  adj       curr_bound       curr_weight       level       curr_path  )   {       // base case is when we have reached level N which   // means we have covered all the nodes once      if     (  level     ==     N  )      {         // check if there is an edge from last vertex in      // path back to the first vertex      if     (  adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]]     !==     0  )      {          // curr_res has the total weight of the      // solution we got      let     curr_res     =      curr_weight     +     adj  [  curr_path  [  level     -     1  ]][  curr_path  [  0  ]];          // Update final result and final path if      // current result is better.      if     (  curr_res      <     final_res  )      {      copyToFinal     (  curr_path  );      final_res     =     curr_res  ;      }      }      return  ;       }          // for any other level iterate for all vertices to      // build the search space tree recursively      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){          // Consider next vertex if it is not same (diagonal      // entry in adjacency matrix and not visited      // already)      if     (  adj  [  curr_path  [  level     -     1  ]][  i  ]     !==     0     &&     !  visited  [  i  ]){          let     temp     =     curr_bound  ;      curr_weight     +=     adj  [  curr_path  [  level     -     1  ]][  i  ];          // different computation of curr_bound for      // level 2 from the other levels      if     (  level     ==     1  ){      curr_bound     -=     (  firstMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }      else      {      curr_bound     -=     (  secondMin     (  adj       curr_path  [  level     -     1  ])     +     firstMin     (  adj       i  ))     /     2  ;       }          // curr_bound + curr_weight is the actual lower bound      // for the node that we have arrived on      // If current lower bound  < final_res we need to explore      // the node further      if     (  curr_bound     +     curr_weight      <     final_res  ){      curr_path  [  level  ]     =     i  ;      visited  [  i  ]     =     true  ;         // call TSPRec for the next level      TSPRec     (  adj       curr_bound       curr_weight       level     +     1       curr_path  );       }          // Else we have to prune the node by resetting      // all changes to curr_weight and curr_bound      curr_weight     -=     adj  [  curr_path  [  level     -     1  ]][  i  ];      curr_bound     =     temp  ;          // Also reset the visited array      visited  .  fill     (  false  )         for     (  var     j     =     0  ;     j      <=     level     -     1  ;     j  ++  )      visited  [  curr_path  [  j  ]]     =     true  ;       }       }   }      // This function sets up final_path[]       function     TSP     (  adj  )   {       let     curr_path     =     Array     (  N     +     1  ).  fill     (  -  1  );       // Calculate initial lower bound for the root node   // using the formula 1/2 * (sum of first min +   // second min) for all edges.   // Also initialize the curr_path and visited array      let     curr_bound     =     0  ;       visited  .  fill     (  false  );          // compute initial bound      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  ){      curr_bound     +=     firstMin     (  adj       i  )     +     secondMin     (  adj       i  );          }          // Rounding off the lower bound to an integer      curr_bound     =     curr_bound     ==     1     ?     (  curr_bound     /     2  )     +     1     :     (  curr_bound     /     2  );       // We start at vertex 1 so the first vertex   // in curr_path[] is 0      visited  [  0  ]     =     true  ;       curr_path  [  0  ]     =     0  ;       // Call to TSPRec for curr_weight equal to   // 0 and level 1      TSPRec     (  adj       curr_bound       0       1       curr_path  );   }   //Adjacency matrix for the given graph      let     adj     =  [[  0       10       15       20  ]         [  10       0       35       25  ]      [  15       35       0       30  ]      [  20       25       30       0  ]];       TSP     (  adj  );       console  .  log     (  `Minimum cost:  ${  final_res  }  `  );   console  .  log     (  `Path Taken:  ${  final_path  .  join     (  ' '  )  }  `  );      // This code is contributed by anskalyan3.   

Izlaz:  
 

Minimum cost : 80 Path Taken : 0 1 3 2 0  

Zaokruživanje se vrši u ovoj liniji koda:

if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2);  

U grani i vezanom algoritmu TSP izračunavamo nižu granicu ukupnog troška optimalnog rješenja dodavanjem minimalnih rubnih troškova za svaki vrh, a zatim dijelimo s dva. Međutim, ova donja granica možda nije cijeli broj. Da bismo dobili cjelobrojnu donju granicu, možemo koristiti zaokruživanje.

U gornjem kodu varijabla curr_bound drži trenutnu donju granicu ukupnog troška optimalnog rješenja. Kada posjetimo novi vrhovi na razini razine, izračunali smo novi donji granični New_bound uzimajući zbroj minimalnih troškova za novi Vertex i njegova dva najbliža susjeda. Zatim ažuriramo varijablu Curr_bound zaokruživanjem New_bounda na najbliži cijeli broj.

Ako je razina 1, zaokružujemo do najbližeg cijelog broja. To je zato što smo do sada posjetili samo jednu vrhovu i želimo biti konzervativni u našoj procjeni ukupnih troškova optimalnog rješenja. Ako je razina veća od 1, koristimo agresivniju strategiju zaokruživanja koja uzima u obzir činjenicu da smo već posjetili neke vrhove i stoga možemo točniju procjenu ukupnog troška optimalnog rješenja.


Vremenska složenost: Najgori slučaj složenosti grane i vezanja ostaje ista kao i onu grube sile, jer u najgorem slučaju možda nikada nećemo dobiti priliku obrezati čvor. Dok se u praksi vrlo dobro izvodi ovisno o različitoj instanci TSP -a. Složenost također ovisi o izboru granične funkcije jer su oni koji odlučuju koliko čvorova treba obrezati.
REFERENCE:  
http://lcm.csa.iisc.ernet.in/dsa/node187.html