Najduža moguća ruta u Matrixu s preponama

Najduža moguća ruta u Matrixu s preponama
Isprobajte na GfG Practice Najduža moguća ruta u Matrixu s preponama

Zadana je 2D binarna matrica zajedno sa [][] gdje su neke ćelije prepreke (označene sa 0 ), a ostalo su slobodne ćelije (označene sa 1 ) vaš zadatak je pronaći duljinu najduže moguće rute od izvorne ćelije (xs ys) (xd yd) .

  • Možete se pomicati samo na susjedne ćelije (gore dolje lijevo desno).
  • Dijagonalni potezi nisu dopušteni.
  • Ćelija jednom posjećena na putu ne može se ponovno posjetiti na tom istom putu.
  • Ako je nemoguće doći do odredišta povratak -1 .

Primjeri:
Ulazni: xs = 0 ys = 0 xd = 1 yd = 7
s [][] = [ [1 1 1 1 1 1 1 1 1 1]


Izlaz: 24
Obrazloženje:

Ulazni: xs = 0 ys = 3 xd = 2 yd = 2



Izlaz: -1
Obrazloženje:
Vidimo da je nemoguće
doći do ćelije (22) iz (03).

Sadržaj

[Pristup] Korištenje povratnog praćenja s matricom posjeta

Ideja je koristiti . Krećemo od ishodišne ​​ćelije matrice i krećemo se naprijed u sva četiri dozvoljena smjera i rekurzivno provjeravamo vode li oni do rješenja ili ne. Ako je odredište pronađeno, ažuriramo vrijednost najduže staze, inače ako nijedno od gore navedenih rješenja ne radi, vraćamo false iz naše funkcije.

CPP
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking   int     dfs  (  vector   <  vector   <  int  >>     &  mat           vector   <  vector   <  bool  >>     &  visited       int     i           int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     -1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat           int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          vector   <  vector   <  bool  >>     visited  (  m       vector   <  bool  >  (  n       false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   GFG     {          // Function to find the longest path using backtracking      public     static     int     dfs  (  int  [][]     mat       boolean  [][]     visited        int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          boolean  [][]     visited     =     new     boolean  [  m  ][  n  ]  ;      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;      int     xd     =     1       yd     =     7  ;          int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking   def   dfs  (  mat     visited     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid blocked or already visited   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   -  1   # Invalid path   # Mark current cell as visited   visited  [  i  ][  j  ]   =   True   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     visited     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   visited   =   [[  False   for   _   in   range  (  n  )]   for   _   in   range  (  m  )]   return   dfs  (  mat     visited     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking      static     int     dfs  (  int  []     mat       bool  []     visited           int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0     ||     visited  [  i       j  ])      {      return     -  1  ;     // Invalid path      }          // Mark current cell as visited      visited  [  i       j  ]     =     true  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i       j  ]     =     false  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          bool  []     visited     =     new     bool  [  m       n  ];      return     dfs  (  mat       visited       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking   function     dfs  (  mat       visited       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid blocked or already visited      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||         mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     -  1  ;         }          // Mark current cell as visited      visited  [  i  ][  j  ]     =     true  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited           ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          const     visited     =     Array  (  m  ).  fill  ().  map  (()     =>     Array  (  n  ).  fill  (  false  ));      return     dfs  (  mat       visited       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Izlaz
24  

Vremenska složenost: O(4^(m*n)) Za svaku ćeliju u m x n matrici algoritam istražuje do četiri moguća smjera (gore dolje lijevo desno) što dovodi do eksponencijalnog broja staza. U najgorem slučaju istražuje sve moguće putove što rezultira vremenskom složenošću od 4^(m*n).
Pomoćni prostor: O(m*n) Algoritam koristi m x n posjećenu matricu za praćenje posjećenih ćelija i rekurzivni stog koji može narasti do dubine od m * n u najgorem slučaju (npr. kada se istražuje put koji pokriva sve ćelije). Tako je pomoćni prostor O(m*n).

[Optimizirani pristup] Bez korištenja dodatnog prostora

Umjesto održavanja zasebne posjećene matrice možemo ponovno koristiti ulaznu matricu za označavanje posjećenih ćelija tijekom obilaska. To štedi dodatni prostor i još uvijek osigurava da nećemo ponovno posjećivati ​​istu ćeliju na putu.

Ispod je pristup korak po korak:

  1. Počnite od izvorne ćelije (xs ys) .
  2. Na svakom koraku istražite sva četiri moguća smjera (desno dolje lijevo gore).
  3. Za svaki važeći potez:
    • Provjerite granice i osigurajte da ćelija ima vrijednost 1 (slobodna ćelija).
    • Označite ćeliju kao posjećenu tako da je privremeno postavite na 0 .
    • Vratite se u sljedeću ćeliju i povećajte duljinu puta.
  4. Ako odredišna ćelija (xd yd) je dosegnuta usporedi trenutnu duljinu puta s maksimalnom do sada i ažuriraj odgovor.
  5. Povratak: vrati izvornu vrijednost ćelije ( 1 ) prije povratka kako biste omogućili drugim stazama da ga istraže.
  6. Nastavite istraživati ​​dok ne obiđete sve moguće staze.
  7. Vrati maksimalnu duljinu puta. Ako je odredište nedostupno povratak -1
C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to find the longest path using backtracking without extra space   int     dfs  (  vector   <  vector   <  int  >>     &  mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -1  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -1  )     {      maxPath     =     max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   int     findLongestPath  (  vector   <  vector   <  int  >>     &  mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  size  ();      int     n     =     mat  [  0  ].  size  ();          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -1  )      cout      < <     result      < <     endl  ;      else      cout      < <     -1      < <     endl  ;          return     0  ;   }   
Java
   public     class   GFG     {          // Function to find the longest path using backtracking without extra space      public     static     int     dfs  (  int  [][]     mat       int     i       int     j       int     x       int     y  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ==     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;      }          public     static     int     findLongestPath  (  int  [][]     mat       int     xs       int     ys       int     xd       int     yd  )     {      int     m     =     mat  .  length  ;      int     n     =     mat  [  0  ]  .  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ==     0     ||     mat  [  xd  ][  yd  ]     ==     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      System  .  out  .  println  (  result  );      else      System  .  out  .  println  (  -  1  );      }   }   
Python
   # Function to find the longest path using backtracking without extra space   def   dfs  (  mat     i     j     x     y  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # If destination is reached   if   i   ==   x   and   j   ==   y  :   return   0   # If cell is invalid or blocked (0 means blocked or visited)   if   i    <   0   or   i   >=   m   or   j    <   0   or   j   >=   n   or   mat  [  i  ][  j  ]   ==   0  :   return   -  1   # Mark current cell as visited by temporarily setting it to 0   mat  [  i  ][  j  ]   =   0   maxPath   =   -  1   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   pathLength   =   dfs  (  mat     ni     nj     x     y  )   # If a valid path is found from this direction   if   pathLength   !=   -  1  :   maxPath   =   max  (  maxPath     1   +   pathLength  )   # Backtrack - restore the cell's original value (1)   mat  [  i  ][  j  ]   =   1   return   maxPath   def   findLongestPath  (  mat     xs     ys     xd     yd  ):   m   =   len  (  mat  )   n   =   len  (  mat  [  0  ])   # Check if source or destination is blocked   if   mat  [  xs  ][  ys  ]   ==   0   or   mat  [  xd  ][  yd  ]   ==   0  :   return   -  1   return   dfs  (  mat     xs     ys     xd     yd  )   def   main  ():   mat   =   [   [  1     1     1     1     1     1     1     1     1     1  ]   [  1     1     0     1     1     0     1     1     0     1  ]   [  1     1     1     1     1     1     1     1     1     1  ]   ]   xs     ys   =   0     0   xd     yd   =   1     7   result   =   findLongestPath  (  mat     xs     ys     xd     yd  )   if   result   !=   -  1  :   print  (  result  )   else  :   print  (  -  1  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG   {      // Function to find the longest path using backtracking without extra space      static     int     dfs  (  int  []     mat       int     i       int     j       int     x       int     y  )      {      int     m     =     mat  .  GetLength  (  0  );      int     n     =     mat  .  GetLength  (  1  );          // If destination is reached      if     (  i     ==     x     &&     j     ==     y  )      {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i       j  ]     ==     0  )      {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i       j  ]     =     0  ;          int     maxPath     =     -  1  ;          // Four possible moves: up down left right      int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !=     -  1  )      {      maxPath     =     Math  .  Max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i       j  ]     =     1  ;          return     maxPath  ;      }          static     int     FindLongestPath  (  int  []     mat       int     xs       int     ys       int     xd       int     yd  )      {      // Check if source or destination is blocked      if     (  mat  [  xs       ys  ]     ==     0     ||     mat  [  xd       yd  ]     ==     0  )      {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );      }          static     void     Main  ()      {      int  []     mat     =     {      {  1       1       1       1       1       1       1       1       1       1  }      {  1       1       0       1       1       0       1       1       0       1  }      {  1       1       1       1       1       1       1       1       1       1  }      };          int     xs     =     0       ys     =     0  ;         int     xd     =     1       yd     =     7  ;             int     result     =     FindLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !=     -  1  )      Console  .  WriteLine  (  result  );      else      Console  .  WriteLine  (  -  1  );      }   }   
JavaScript
   // Function to find the longest path using backtracking without extra space   function     dfs  (  mat       i       j       x       y  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // If destination is reached      if     (  i     ===     x     &&     j     ===     y  )     {      return     0  ;      }          // If cell is invalid or blocked (0 means blocked or visited)      if     (  i      <     0     ||     i     >=     m     ||     j      <     0     ||     j     >=     n     ||     mat  [  i  ][  j  ]     ===     0  )     {      return     -  1  ;         }          // Mark current cell as visited by temporarily setting it to 0      mat  [  i  ][  j  ]     =     0  ;          let     maxPath     =     -  1  ;          // Four possible moves: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       ni       nj       x       y  );          // If a valid path is found from this direction      if     (  pathLength     !==     -  1  )     {      maxPath     =     Math  .  max  (  maxPath       1     +     pathLength  );      }      }          // Backtrack - restore the cell's original value (1)      mat  [  i  ][  j  ]     =     1  ;          return     maxPath  ;   }   function     findLongestPath  (  mat       xs       ys       xd       yd  )     {      const     m     =     mat  .  length  ;      const     n     =     mat  [  0  ].  length  ;          // Check if source or destination is blocked      if     (  mat  [  xs  ][  ys  ]     ===     0     ||     mat  [  xd  ][  yd  ]     ===     0  )     {      return     -  1  ;      }          return     dfs  (  mat       xs       ys       xd       yd  );   }      const     mat     =     [      [  1       1       1       1       1       1       1       1       1       1  ]      [  1       1       0       1       1       0       1       1       0       1  ]      [  1       1       1       1       1       1       1       1       1       1  ]      ];          const     xs     =     0       ys     =     0  ;         const     xd     =     1       yd     =     7  ;             const     result     =     findLongestPath  (  mat       xs       ys       xd       yd  );          if     (  result     !==     -  1  )      console  .  log  (  result  );      else      console  .  log  (  -  1  );   

Izlaz
24  

Vremenska složenost: O(4^(m*n))Algoritam i dalje istražuje do četiri smjera po ćeliji u m x n matrici što rezultira eksponencijalnim brojem putanja. Modifikacija na mjestu ne utječe na broj istraženih staza tako da vremenska složenost ostaje 4^(m*n).
Pomoćni prostor: O(m*n) Dok se posjećena matrica eliminira modificiranjem ulazne matrice na mjestu, rekurzivni stog i dalje zahtijeva O(m*n) prostora jer maksimalna dubina rekurzije može biti m * n u najgorem slučaju (npr. put koji posjećuje sve ćelije u mreži s većinom 1).