Déterminer si un sous-réseau a la forme d'une montagne ou non

Déterminer si un sous-réseau a la forme d'une montagne ou non
Essayez-le sur GfG Practice #practiceLinkDiv { display : aucun !important; }

On nous donne un tableau d'entiers et une plage dont nous avons besoin pour déterminer si le sous-tableau qui se situe dans cette plage a des valeurs en forme de montagne ou non. Toutes les valeurs du sous-tableau sont dites avoir la forme d'une montagne si toutes les valeurs augmentent ou diminuent ou augmentent d'abord puis diminuent. 
Plus formellement un sous-tableau [a1 a2 a3…an] est dit en forme de montagne s'il existe un entier K 1 <= K <= N such that 
a1 <= a2 <= a3 .. <= aK >= une(K+1) >= une(K+2) …. >= unN  

Exemples :  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated 
Recommended Practice Problème de sous-réseau de montagne Essayez-le !

Solution:  

    Approche: Le problème comporte plusieurs requêtes, donc pour chaque requête, la solution doit être calculée avec le moins de complexité temporelle possible. Créez donc deux espaces supplémentaires de la longueur du tableau d'origine. Pour chaque élément, trouver le dernier index du côté gauche qui augmente, c'est-à-dire supérieur à son élément précédent et trouver l'élément du côté droit stockera le premier index du côté droit qui diminue, c'est-à-dire supérieur à son élément suivant. Si ces valeurs peuvent être calculées pour chaque indice en temps constant, alors pour chaque plage donnée, la réponse peut être donnée en temps constant. Algorithme:  
    1. Créez deux espaces de longueur supplémentaires n gauche et droite et une variable supplémentaire dernier point
    2. Initialiser gauche[0] = 0 et dernier point = 0
    3. Parcourez le tableau d'origine du deuxième index à la fin
    4. Pour chaque index, vérifiez s'il est supérieur à l'élément précédent. Si oui, mettez à jour le dernier point avec l'indice actuel.
    5. Pour chaque magasin d'index, le dernier point dans gauche[i]
    6. initialiser à droite[N-1] = N-1 et dernier point = N-1
    7. Parcourez le tableau d'origine de l'avant-dernier index au début
    8. Pour chaque index, vérifiez s'il est supérieur à l'élément suivant. Si oui, mettez à jour le dernier point avec l'indice actuel.
    9. Pour chaque magasin d'index, le dernier point dans c'est vrai[i]
    10. Traitez maintenant les requêtes
    11. pour chaque requête lr si droite[l] >= gauche[r] puis imprimez Oui autre Non
    Mise en œuvre:
C++
   // C++ program to check whether a subarray is in   // mountain form or not   #include          using     namespace     std  ;   // Utility method to construct left and right array   int     preprocess  (  int     arr  []     int     N       int     left  []     int     right  [])   {      // Initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;      for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }      // Initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;      for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }   }   // Method returns true if arr[L..R] is in mountain form   bool     isSubarrayMountainForm  (  int     arr  []     int     left  []      int     right  []     int     L       int     R  )   {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      int     left  [  N  ]     right  [  N  ];      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      L     =     1  ;      R     =     3  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      return     0  ;   }   
Java
   // Java program to check whether a subarray is in   // mountain form or not   class   SubArray   {      // Utility method to construct left and right array      static     void     preprocess  (  int     arr  []       int     N       int     left  []       int     right  []  )      {      // initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ]  )      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ]  )      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if arr[L..R] is in mountain form      static     boolean     isSubarrayMountainForm  (  int     arr  []       int     left  []        int     right  []       int     L       int     R  )      {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]  );      }          public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     arr  .  length  ;      int     left  []     =     new     int  [  N  ]  ;      int     right  []     =     new     int  [  N  ]  ;      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );      }   }   // This Code is Contributed by Saket Kumar   
Python3
   # Python 3 program to check whether a subarray is in   # mountain form or not   # Utility method to construct left and right array   def   preprocess  (  arr     N     left     right  ):   # initialize first left index as that index only   left  [  0  ]   =   0   lastIncr   =   0   for   i   in   range  (  1    N  ):   # if current value is greater than previous   # update last increasing   if   (  arr  [  i  ]   >   arr  [  i   -   1  ]):   lastIncr   =   i   left  [  i  ]   =   lastIncr   # initialize last right index as that index only   right  [  N   -   1  ]   =   N   -   1   firstDecr   =   N   -   1   i   =   N   -   2   while  (  i   >=   0  ):   # if current value is greater than next   # update first decreasing   if   (  arr  [  i  ]   >   arr  [  i   +   1  ]):   firstDecr   =   i   right  [  i  ]   =   firstDecr   i   -=   1   # method returns true if arr[L..R] is in mountain form   def   isSubarrayMountainForm  (  arr     left     right     L     R  ):   # return true only if right at starting range is   # greater than left at ending range   return   (  right  [  L  ]   >=   left  [  R  ])   # Driver code    if   __name__   ==   '__main__'  :   arr   =   [  2     3     2     4     4     6     3     2  ]   N   =   len  (  arr  )   left   =   [  0   for   i   in   range  (  N  )]   right   =   [  0   for   i   in   range  (  N  )]   preprocess  (  arr     N     left     right  )   L   =   0   R   =   2   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   L   =   1   R   =   3   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   # This code is contributed by   # Surendra_Gangwar   
C#
   // C# program to check whether    // a subarray is in mountain    // form or not   using     System  ;   class     GFG   {          // Utility method to construct       // left and right array      static     void     preprocess  (  int     []  arr       int     N           int     []  left       int     []  right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      static     bool     isSubarrayMountainForm  (  int     []  arr       int     []  left        int     []  right       int     L       int     R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }              // Driver Code      static     public     void     Main     ()      {      int     []  arr     =     {  2       3       2       4        4       6       3       2  };      int     N     =     arr  .  Length  ;      int     []  left     =     new     int  [  N  ];      int     []  right     =     new     int  [  N  ];      preprocess  (  arr       N       left       right  );          int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );      }   }   // This code is contributed by aj_36   
JavaScript
    <  script  >      // Javascript program to check whether       // a subarray is in mountain       // form or not          // Utility method to construct       // left and right array      function     preprocess  (  arr       N       left       right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      let     lastIncr     =     0  ;          for     (  let     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      let     firstDecr     =     N     -     1  ;          for     (  let     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      function     isSubarrayMountainForm  (  arr       left       right       L       R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }          let     arr     =     [  2       3       2       4       4       6       3       2  ];      let     N     =     arr  .  length  ;      let     left     =     new     Array  (  N  );      let     right     =     new     Array  (  N  );      preprocess  (  arr       N       left       right  );      let     L     =     0  ;      let     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      document  .  write  (  'Subarray is in '     +     'mountain form'     +     ' 
'
); else document . write ( 'Subarray is not ' + 'in mountain form' + '
'
); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) document . write ( 'Subarray is in ' + 'mountain form' ); else document . write ( 'Subarray is not ' + 'in mountain form' ); < /script>
    Sortir:
Subarray is in mountain form Subarray is not in mountain form 
    Analyse de complexité :  
      Complexité temporelle : Sur). 
      Seules deux traversées sont nécessaires, la complexité temporelle est donc O(n). Complexité spatiale : Sur). 
      Deux espaces supplémentaires de longueur n sont nécessaires, la complexité spatiale est donc O(n).


 

Créer un quiz