Pisin osajono siten, että vierekkäisten välinen ero on yksi

Pisin osajono siten, että vierekkäisten välinen ero on yksi
Kokeile sitä GfG Practicessa

Annettu a rray arr[] / koko n tehtävänä on löytää pisin jakso sellainen, että absoluuttinen ero välillä vierekkäisiä elementtejä on 1.

Esimerkkejä: 

Syöte: arr[] = [10 9 4 5 4 8 6]
Lähtö: 3
Selitys: Pituuden 3 kolme mahdollista osasekvenssiä ovat [10 9 8] [4 5 4] ja [4 5 6], joissa vierekkäisten elementtien absoluuttinen ero on 1. Mitään kelvollista pitempi osasekvenssiä ei voitu muodostaa.

Syöte: arr[] = [1 2 3 4 5]
Lähtö: 5
Selitys: Kaikki elementit voidaan sisällyttää kelvolliseen osajaksoon.

Rekursion käyttö - O(2^n) aika ja O(n) avaruus

varten rekursiivinen lähestymistapa harkitsemme kaksi tapausta jokaisessa vaiheessa:

  • Jos elementti täyttää ehdon ( absoluuttinen ero vierekkäisten elementtien välillä on 1) me sisältää se jatkossa ja siirry kohtaan seuraavaksi elementti.
  • muuten me ohita the nykyinen elementtiä ja siirry seuraavaan.

Matemaattisesti toistuva suhde näyttää seuraavalta:

  • pisinSubseq(ulk idx ed.) = max(pitin osajakso(ulk idx + 1 edellinen) 1 + pisin alajakso(ulk idx + 1 idx))

Perustapaus:

  • Kun idx == arr.size() meillä on saavutettu taulukon loppu niin paluu 0 (koska enempää elementtejä ei voi sisällyttää).
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   #include          using     namespace     std  ;   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -1       arr  );   }   int     main  ()     {      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   import     java.util.ArrayList  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion.   def   subseq_helper  (  idx     prev     arr  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr  )   # Return the maximum of the two options   return   max  (  take     no_take  )   def   longest_subseq  (  arr  ):   # Start recursion from index 0    # with no previous element   return   subseq_helper  (  0     -  1     arr  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev           List   <  int  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  Max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     SubseqHelper  (  0       -  1       arr  );      }      static     void     Main  (  string  []     args  )     {          List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion.   function     subseqHelper  (  idx       prev       arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );   }   function     longestSubseq  (  arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Lähtö
3 

Ylhäältä alaspäin suuntautuvan DP:n käyttäminen (Memoization ) -  O(n^2)  Aika ja  O(n^2)  Avaruus

Jos huomaamme huolellisesti, voimme havaita, että yllä olevalla rekursiivisella ratkaisulla on seuraavat kaksi ominaisuutta  Dynaaminen ohjelmointi :

1. Optimaalinen alusrakenne: Ratkaisu löytää pisin osasekvenssi siten, että ero vierekkäisten elementtien välillä voidaan johtaa pienempien osaongelmien optimaalisista ratkaisuista. Erityisesti mille tahansa idx (nykyinen indeksi) ja Ed (edellinen indeksi alasekvenssissä) voimme ilmaista rekursiivisen suhteen seuraavasti:

  • subseqHelper(idx prev) = max(seqHelper(idx + 1 prev) 1 + subseqHelper(idx + 1 idx))

2. Päällekkäiset aliongelmat: Toteutettaessa a rekursiivinen Lähestymistavasta ongelman ratkaisemiseksi havaitsemme, että monet osaongelmat lasketaan useita kertoja. Esimerkiksi laskettaessa subseqHelper(0 -1) joukolle arr = [10 9 4 5] aliongelma subseqHelper(2 -1) voidaan laskea useita kertaa. Tämän toiston välttämiseksi käytämme muistiinpanoa tallentamaan aiemmin laskettujen osaongelmien tulokset.

Rekursiivinen ratkaisu sisältää kaksi parametrit:

  • idx (taulukon nykyinen indeksi).
  • Ed (alisekvenssin viimeksi sisällytetyn elementin indeksi).

Meidän on seurattava molemmat parametrit joten luomme a 2D-taulukkomuistio / koko (n) x (n+1) . Alustamme 2D-taulukkomuistio, jossa -1 osoittamaan, että aliongelmia ei ole vielä laskettu. Ennen tuloksen laskemista tarkistamme, onko arvo at muistio[idx][edellinen+1] on -1. Jos se on, laskemme ja tallentaa tulos. Muussa tapauksessa palautamme tallennetun tuloksen.

C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   #include          using     namespace     std  ;   // Helper function to recursively find the subsequence   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr           vector   <  vector   <  int  >>&     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      return     memo  [  idx  ][  prev     +     1  ]     =     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      vector   <  vector   <  int  >>     memo  (  n       vector   <  int  >  (  n     +     1       -1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -1       arr       memo  );   }   int     main  ()     {      // Input array of integers      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   import     java.util.ArrayList  ;   import     java.util.Arrays  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr           int  [][]     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      int  [][]     memo     =     new     int  [  n  ][  n     +     1  ]  ;      for     (  int  []     row     :     memo  )     {      Arrays  .  fill  (  row       -  1  );      }      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion with memoization.   def   subseq_helper  (  idx     prev     arr     memo  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Check if the result is already computed   if   memo  [  idx  ][  prev   +   1  ]   !=   -  1  :   return   memo  [  idx  ][  prev   +   1  ]   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr     memo  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr     memo  )   # Store the result in the memo table   memo  [  idx  ][  prev   +   1  ]   =   max  (  take     no_take  )   # Return the stored result   return   memo  [  idx  ][  prev   +   1  ]   def   longest_subseq  (  arr  ):   n   =   len  (  arr  )   # Create a memoization table initialized to -1   memo   =   [[  -  1   for   _   in   range  (  n   +   1  )]   for   _   in   range  (  n  )]   # Start recursion from index 0 with    # no previous element   return   subseq_helper  (  0     -  1     arr     memo  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev        List   <  int  >     arr       int  []     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx       prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx       prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx       prev     +     1  ]     =     Math  .  Max  (  take       noTake  );      // Return the stored result      return     memo  [  idx       prev     +     1  ];      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {          int     n     =     arr  .  Count  ;          // Create a memoization table initialized to -1      int  []     memo     =     new     int  [  n       n     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <=     n  ;     j  ++  )     {      memo  [  i       j  ]     =     -  1  ;      }      }      // Start recursion from index 0 with no previous element      return     SubseqHelper  (  0       -  1       arr       memo  );      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion with memoization.   function     subseqHelper  (  idx       prev       arr       memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !==     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ];   }   function     longestSubseq  (  arr  )     {      let     n     =     arr  .  length  ;          // Create a memoization table initialized to -1      let     memo     =      Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n     +     1  ).  fill  (  -  1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Lähtö
3 

Alhaalta ylöspäin suuntautuvan DP:n (taulukkolaskenta) käyttäminen -   O(n)  Aika ja  O(n)  Avaruus

Lähestymistapa on samanlainen kuin rekursiivinen menetelmällä, mutta sen sijaan, että hajottaisimme ongelman rekursiivisesti, rakennamme iteratiivisesti ratkaisun a alhaalta ylöspäin suuntautuvalla tavalla.
Rekursion sijaan käytämme a hashmappi dynaaminen ohjelmointitaulukko (dp) tallentaaksesi pituudet pisimmistä osajaksoista. Tämä auttaa meitä laskemaan ja päivittämään tehokkaasti jatkojakso pituudet kaikille matriisin elementtien mahdollisille arvoille.

Dynaaminen ohjelmointisuhde:

dp[x] edustaa pituus pisimmästä osajonosta, joka päättyy elementtiin x.

Jokaiselle elementille arr[i] taulukossa: Jos arr[i] + 1 tai arr[i] - 1 olemassa dp:ssä:

  • dp[arr[i]] = 1 + max(dp[arr[i] + 1] dp[arr[i] - 1]);

Tämä tarkoittaa, että voimme pidentää alasarjoja, jotka päättyvät arr[i] + 1 tai arr[i] - 1 kirjoittaja mukaan lukien arr[i].

Muussa tapauksessa aloita uusi alajakso:

  • dp[arr[i]] = 1;
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // Tabulation.   #include          using     namespace     std  ;   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Base case: if the array has only       // one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      unordered_map   <  int       int  >     dp  ;      int     ans     =     1  ;      // Loop through the array to fill the map      // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {          // Check if the current element is adjacent      // to another subsequence      if     (  dp  .  count  (  arr  [  i  ]     +     1  )     >     0         ||     dp  .  count  (  arr  [  i  ]     -     1  )     >     0  )     {          dp  [  arr  [  i  ]]     =     1     +         max  (  dp  [  arr  [  i  ]     +     1  ]     dp  [  arr  [  i  ]     -     1  ]);      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }          // Update the result with the maximum      // subsequence length      ans     =     max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   import     java.util.HashMap  ;   import     java.util.ArrayList  ;   class   GfG     {      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      HashMap   <  Integer       Integer  >     dp     =     new     HashMap   <>  ();      int     ans     =     1  ;      // Loop through the array to fill the map       // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent       // to another subsequence      if     (  dp  .  containsKey  (  arr  .  get  (  i  )     +     1  )         ||     dp  .  containsKey  (  arr  .  get  (  i  )     -     1  ))     {      dp  .  put  (  arr  .  get  (  i  )     1     +         Math  .  max  (  dp  .  getOrDefault  (  arr  .  get  (  i  )     +     1       0  )         dp  .  getOrDefault  (  arr  .  get  (  i  )     -     1       0  )));      }         else     {      dp  .  put  (  arr  .  get  (  i  )     1  );         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  .  get  (  arr  .  get  (  i  )));      }      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );          System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python code to find the longest subsequence such that   # the difference between adjacent elements is    # one using Tabulation.   def   longestSubseq  (  arr  ):   n   =   len  (  arr  )   # Base case: if the array has only one element   if   n   ==   1  :   return   1   # Dictionary to store the length of the    # longest subsequence   dp   =   {}   ans   =   1   for   i   in   range  (  n  ):   # Check if the current element is adjacent to    # another subsequence   if   arr  [  i  ]   +   1   in   dp   or   arr  [  i  ]   -   1   in   dp  :   dp  [  arr  [  i  ]]   =   1   +   max  (  dp  .  get  (  arr  [  i  ]   +   1     0  )    dp  .  get  (  arr  [  i  ]   -   1     0  ))   else  :   dp  [  arr  [  i  ]]   =   1   # Update the result with the maximum   # subsequence length   ans   =   max  (  ans     dp  [  arr  [  i  ]])   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longestSubseq  (  arr  ))   
C#
   // C# code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      static     int     longestSubseq  (  List   <  int  >     arr  )     {      int     n     =     arr  .  Count  ;      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      Dictionary   <  int       int  >     dp     =     new     Dictionary   <  int       int  >  ();      int     ans     =     1  ;      // Loop through the array to fill the map with       // subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent to      // another subsequence      if     (  dp  .  ContainsKey  (  arr  [  i  ]     +     1  )     ||     dp  .  ContainsKey  (  arr  [  i  ]     -     1  ))     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  Max  (  dp  .  GetValueOrDefault  (  arr  [  i  ]     +     1       0  )      dp  .  GetValueOrDefault  (  arr  [  i  ]     -     1       0  ));      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  Max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  longestSubseq  (  arr  ));      }   }   
JavaScript
   // Function to find the longest subsequence such that   // the difference between adjacent elements   // is one using Tabulation.   function     longestSubseq  (  arr  )     {      const     n     =     arr  .  length  ;      // Base case: if the array has only one element      if     (  n     ===     1  )     {      return     1  ;      }      // Object to store the length of the      // longest subsequence      let     dp     =     {};      let     ans     =     1  ;      // Loop through the array to fill the object      // with subsequence lengths      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Check if the current element is adjacent to       // another subsequence      if     ((  arr  [  i  ]     +     1  )     in     dp     ||     (  arr  [  i  ]     -     1  )     in     dp  )     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  max  (  dp  [  arr  [  i  ]     +     1  ]      ||     0       dp  [  arr  [  i  ]     -     1  ]     ||     0  );      }     else     {      dp  [  arr  [  i  ]]     =     1  ;      }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Lähtö
3 
Luo tietokilpailu