Segmentos mínimos en visualización de siete segmentos

Segmentos mínimos en visualización de siete segmentos

Se puede utilizar una pantalla de siete segmentos para mostrar números. Dada una serie de norte números naturales. La tarea es encontrar el número en la matriz que utiliza el número mínimo de segmentos para mostrar el número. Si varios números tienen un número mínimo de segmentos, genere el número que tenga el índice más pequeño.

Pantalla de siete segmentos

Ejemplos:   

Aporte : arreglo[] = { 1 2 3 4 5 }.
Producción : 1
Explicación: El elemento que utiliza el número mínimo de segmentos es 1 (es decir, 2 segmentos)

Aporte : llegada[] = { 489 206 745 123 756 }.
Producción : 745
Explicación: El elemento con el índice más pequeño que utiliza el número mínimo de segmentos es 745 (es decir, 12 segmentos).

La idea es precalcular el número de segmentos utilizados por los dígitos del 0 al 9 y almacenarlo. Ahora, para cada elemento de la matriz, sume el número de segmentos utilizados por cada dígito. Luego busque el elemento que utiliza el número mínimo de segmentos.

El número de segmento utilizado por dígito: 
0 -> 6 
1 -> 2 
2 -> 5 
3 -> 5 
4 -> 4 
5 -> 5 
6 -> 6 
7 -> 3 
8 -> 7 
9 -> 6

C++
   #include       using     namespace     std  ;   // Precomputed values of segment used by digit 0 to 9.   const     int     seg  [  10  ]     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x  )      {      count     +=     seg  [  x  %  10  ];      x     /=     10  ;      }      return     count  ;   }   int     elementMinSegment  (  vector   <  int  >     arr       int     n  )   {      // Initialising the minimum segment and minimum      // number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   int     main  ()   {      vector   <  int  >     arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  size  ();         cout      < <     elementMinSegment  (  arr       n  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.io.*  ;   class   GFG     {       // Precomputed values of segment    // used by digit 0 to 9.   static     int     []  seg     =     {     6       2       5       5       4       5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ]  ;      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ]  ;      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment       // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]  );      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]  );      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ]  ;   }      static     public     void     main     (  String  []     args  )      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  elementMinSegment  (  arr       n  ));      }   }   
Python
   # Precomputed values of segment   # used by digit 0 to 9.   seg   =   [  6     2     5     5     4     5     6     3     7     6  ]   # Return the number of   # segments used by x.   def   computeSegment  (  x  ):   if  (  x   ==   0  ):   return   seg  [  0  ]   count   =   0   # Finding sum of the segment    # used by each digit of a number.   while  (  x  ):   count   +=   seg  [  x   %   10  ]   x   =   x   //   10   return   count   # function to return minimum sum index   def   elementMinSegment  (  arr     n  ):   # Initialising the minimum    # segment and minimum number index.   minseg   =   computeSegment  (  arr  [  0  ])   minindex   =   0   # Finding and comparing segment   # used by each number arr[i].   for   i   in   range  (  1     n  ):   temp   =   computeSegment  (  arr  [  i  ])   # If arr[i] used less segment   # then update minimum segment   # and minimum number.   if  (  temp    <   minseg  ):   minseg   =   temp   minindex   =   i   return   arr  [  minindex  ]   # Driver Code   arr   =   [  489     206     745     123     756  ]   n   =   len  (  arr  )   # function print required answer   print  (  elementMinSegment  (  arr     n  ))   # This code is contributed by   # Sanjit_Prasad   
C#
   using     System  ;   class     GFG  {       // Precomputed values of segment   // used by digit 0 to 9.   static     int     []  seg     =     new     int  [  10  ]{     6       2       5       5       4        5       6       3       7       6  };   // Return the number of segments used by x.   static     int     computeSegment  (  int     x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      int     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     /=     10  ;      }      return     count  ;   }   static     int     elementMinSegment  (  int     []  arr       int     n  )   {      // Initialising the minimum segment      // and minimum number index.      int     minseg     =     computeSegment  (  arr  [  0  ]);      int     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      int     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }      static     public     void     Main  ()      {      int     []  arr     =     {  489       206       745       123       756  };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  elementMinSegment  (  arr       n  ));      }   }   
JavaScript
   // Precomputed values of segment   // used by digit 0 to 9.   let     seg     =     [     6       2       5       5       4       5       6       3       7       6  ];   // Return the number of segments used by x.   function     computeSegment  (  x  )   {      if     (  x     ==     0  )      return     seg  [  0  ];      let     count     =     0  ;      // Finding sum of the segment used by      // each digit of a number.      while     (  x     >     0  )      {      count     +=     seg  [  x     %     10  ];      x     =     parseInt  (  x     /     10       10  );      }      return     count  ;   }   function     elementMinSegment  (  arr       n  )   {          // Initialising the minimum segment      // and minimum number index.      let     minseg     =     computeSegment  (  arr  [  0  ]);      let     minindex     =     0  ;      // Finding and comparing segment used      // by each number arr[i].      for  (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      let     temp     =     computeSegment  (  arr  [  i  ]);      // If arr[i] used less segment then update      // minimum segment and minimum number.      if     (  temp      <     minseg  )      {      minseg     =     temp  ;      minindex     =     i  ;      }      }      return     arr  [  minindex  ];   }   // Driver code   let     arr     =     [     489       206       745       123       756     ];   let     n     =     arr  .  length  ;   console  .  log  (  elementMinSegment  (  arr       n  ));   

Producción
745 

Complejidad del tiempo: O(n * log 10 norte)
Espacio auxiliar: O(10)

Crear cuestionario