Ruta de costo mínimo con movimientos hacia la izquierda, derecha, abajo y arriba permitidos

Ruta de costo mínimo con movimientos hacia la izquierda, derecha, abajo y arriba permitidos
Pruébalo en GfG Practice

Dada una cuadrícula de tamaño 2D n*n donde cada celda representa el costo de atravesar esa celda, la tarea es encontrar el costo minimo pasar de la arriba a la izquierda celular a la abajo a la derecha celúla. Desde una celda dada podemos movernos 4 direcciones : izquierda derecha arriba abajo.

Nota: Se supone que no existen ciclos de costos negativos en la matriz de insumos.

Ejemplo:



Aporte: cuadrícula = {{9 4 9 9}
{6 7 6 4}
{8 3 3 7}
{7 4 9 10}}
Salida: 43
Explicación: La ruta de costo mínimo es 9 + 4 + 7 + 3 + 3 + 7 + 10.

Acercarse:

La idea es utilizar algoritmo de dijkstra para encontrar la ruta de costo mínimo a través de la red. Este enfoque trata la cuadrícula como un gráfico donde cada celda es un nodo y el algoritmo explora dinámicamente la ruta más rentable hacia la celda inferior derecha expandiendo siempre primero las rutas de menor costo.

Enfoque paso a paso:

  1. Utilice un montón mínimo para procesar siempre primero la ruta de menor costo e introduzca la celda superior izquierda en ella.
  2. Inicialice una matriz de costos con valores máximos estableciendo el costo de la celda inicial en su valor de cuadrícula.
  3. Para cada celda, marque las 4 celdas vecinas.
    1. Si se encuentra una ruta de menor costo, actualice el costo de la celda y colóquela en el montón.
  4. Devuelve el coste mínimo para llegar a la celda inferior derecha.

A continuación se muestra la implementación del enfoque anterior:

C++
   // C++ program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   #include          using     namespace     std  ;   // Function to check if cell is valid.   bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i  >=  0     &&     i   <  n     &&     j  >=  0     &&     j   <  n  ;   }   int     minimumCostPath  (  vector   <  vector   <  int  >>     &  grid  )     {      int     n     =     grid  .  size  ();          // Min heap to implement dijkstra      priority_queue   <  vector   <  int  >           vector   <  vector   <  int  >>       greater   <  vector   <  int  >>>     pq  ;          // 2d grid to store minimum cost      // to reach every cell.      vector   <  vector   <  int  >>     cost  (  n       vector   <  int  >  (  n       INT_MAX  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      vector   <  vector   <  int  >>     dir     =     {{  -1    0  }     {  1    0  }     {  0    -1  }     {  0    1  }};          pq  .  push  ({  grid  [  0  ][  0  ]     0       0  });          while     (  !  pq  .  empty  ())     {      vector   <  int  >     top     =     pq  .  top  ();      pq  .  pop  ();          int     c     =     top  [  0  ]     i     =     top  [  1  ]     j     =     top  [  2  ];          // Check for all 4 neighbouring cells.      for     (  auto     d  :     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ]   <  cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  push  ({  cost  [  x  ][  y  ]     x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n  -1  ][  n  -1  ];   }   int     main  ()     {      vector   <  vector   <  int  >>     grid     =         {{  9    4    9    9  }{  6    7    6    4  }{  8    3    3    7  }{  7    4    9    10  }};          cout      < <     minimumCostPath  (  grid  )      < <     endl  ;          return     0  ;   }   
Java
   // Java program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   import     java.util.PriorityQueue  ;   import     java.util.Arrays  ;   class   GfG     {      // Function to check if cell is valid.      static     boolean     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  length  ;          // Min heap to implement Dijkstra      PriorityQueue   <  int  []>     pq     =         new     PriorityQueue   <>  ((  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][  n  ]  ;      for     (  int  []     row     :     cost  )     {      Arrays  .  fill  (  row       Integer  .  MAX_VALUE  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ]  ;          // Direction vector to move in 4 directions      int  [][]     dir     =     {{  -  1       0  }     {  1       0  }     {  0       -  1  }     {  0       1  }};          pq  .  offer  (  new     int  []  {  grid  [  0  ][  0  ]       0       0  });          while     (  !  pq  .  isEmpty  ())     {      int  []     top     =     pq  .  poll  ();          int     c     =     top  [  0  ]       i     =     top  [  1  ]       j     =     top  [  2  ]  ;          // Check for all 4 neighbouring cells.      for     (  int  []     d     :     dir  )     {      int     x     =     i     +     d  [  0  ]  ;      int     y     =     j     +     d  [  1  ]  ;          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ]  )     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]  ;          // Push the cell into heap.      pq  .  offer  (  new     int  []  {  cost  [  x  ][  y  ]       x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     grid     =     {      {  9       4       9       9  }      {  6       7       6       4  }      {  8       3       3       7  }      {  7       4       9       10  }      };          System  .  out  .  println  (  minimumCostPath  (  grid  ));      }   }   
Python
   # Python program to find minimum Cost Path with    # Left Right Bottom and Up moves allowed   import   heapq   # Function to check if cell is valid.   def   isValidCell  (  i     j     n  ):   return   i   >=   0   and   i    <   n   and   j   >=   0   and   j    <   n   def   minimumCostPath  (  grid  ):   n   =   len  (  grid  )   # Min heap to implement Dijkstra   pq   =   []   # 2D grid to store minimum cost   # to reach every cell.   cost   =   [[  float  (  'inf'  )]   *   n   for   _   in   range  (  n  )]   cost  [  0  ][  0  ]   =   grid  [  0  ][  0  ]   # Direction vector to move in 4 directions   dir   =   [[  -  1     0  ]   [  1     0  ]   [  0     -  1  ]   [  0     1  ]]   heapq  .  heappush  (  pq     [  grid  [  0  ][  0  ]   0     0  ])   while   pq  :   c     i     j   =   heapq  .  heappop  (  pq  )   # Check for all 4 neighbouring cells.   for   d   in   dir  :   x     y   =   i   +   d  [  0  ]   j   +   d  [  1  ]   # If cell is valid and cost to reach this cell    # from current cell is less   if   isValidCell  (  x     y     n  )   and   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]    <   cost  [  x  ][  y  ]:   # Update cost to reach this cell.   cost  [  x  ][  y  ]   =   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]   # Push the cell into heap.   heapq  .  heappush  (  pq     [  cost  [  x  ][  y  ]   x     y  ])   # Return minimum cost to    # reach bottom right cell.   return   cost  [  n   -   1  ][  n   -   1  ]   if   __name__   ==   '__main__'  :   grid   =   [   [  9     4     9     9  ]   [  6     7     6     4  ]   [  8     3     3     7  ]   [  7     4     9     10  ]   ]   print  (  minimumCostPath  (  grid  ))   
C#
   // C# program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Function to check if cell is valid.      static     bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  Length  ;          // Min heap to implement Dijkstra      var     pq     =     new     SortedSet   <  (  int     cost       int     x       int     y  )  >  ();          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      cost  [  i  ]     =     new     int  [  n  ];      Array  .  Fill  (  cost  [  i  ]     int  .  MaxValue  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      int  [][]     dir     =     {     new     int  []     {  -  1       0  }     new     int  []     {  1       0  }         new     int  []     {  0       -  1  }     new     int  []     {  0       1  }     };          pq  .  Add  ((  grid  [  0  ][  0  ]     0       0  ));          while     (  pq  .  Count     >     0  )     {      var     top     =     pq  .  Min  ;      pq  .  Remove  (  top  );          int     i     =     top  .  x       j     =     top  .  y  ;          // Check for all 4 neighbouring cells.      foreach     (  var     d     in     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  Add  ((  cost  [  x  ][  y  ]     x       y  ));      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];      }      static     void     Main  (  string  []     args  )     {      int  [][]     grid     =     new     int  [][]     {      new     int  []     {  9       4       9       9  }      new     int  []     {  6       7       6       4  }      new     int  []     {  8       3       3       7  }      new     int  []     {  7       4       9       10  }      };          Console  .  WriteLine  (  minimumCostPath  (  grid  ));      }   }   
JavaScript
   // JavaScript program to find minimum Cost Path with   // Left Right Bottom and Up moves allowed   function     comparator  (  a       b  )     {      if     (  a  [  0  ]     >     b  [  0  ])     return     -  1  ;      if     (  a  [  0  ]      <     b  [  0  ])     return     1  ;      return     0  ;   }   class     PriorityQueue     {      constructor  (  compare  )     {      this  .  heap     =     [];      this  .  compare     =     compare  ;      }      enqueue  (  value  )     {      this  .  heap  .  push  (  value  );      this  .  bubbleUp  ();      }      bubbleUp  ()     {      let     index     =     this  .  heap  .  length     -     1  ;      while     (  index     >     0  )     {      let     element     =     this  .  heap  [  index  ]      parentIndex     =     Math  .  floor  ((  index     -     1  )     /     2  )      parent     =     this  .  heap  [  parentIndex  ];      if     (  this  .  compare  (  element       parent  )      <     0  )     break  ;      this  .  heap  [  index  ]     =     parent  ;      this  .  heap  [  parentIndex  ]     =     element  ;      index     =     parentIndex  ;      }      }      dequeue  ()     {      let     max     =     this  .  heap  [  0  ];      let     end     =     this  .  heap  .  pop  ();      if     (  this  .  heap  .  length     >     0  )     {      this  .  heap  [  0  ]     =     end  ;      this  .  sinkDown  (  0  );      }      return     max  ;      }      sinkDown  (  index  )     {      let     left     =     2     *     index     +     1        right     =     2     *     index     +     2        largest     =     index  ;      if     (      left      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  left  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     left  ;      }      if     (      right      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  right  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     right  ;      }      if     (  largest     !==     index  )     {      [  this  .  heap  [  largest  ]     this  .  heap  [  index  ]]     =     [      this  .  heap  [  index  ]      this  .  heap  [  largest  ]      ];      this  .  sinkDown  (  largest  );      }      }      isEmpty  ()     {      return     this  .  heap  .  length     ===     0  ;      }   }   // Function to check if cell is valid.   function     isValidCell  (  i       j       n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;   }   function     minimumCostPath  (  grid  )     {      let     n     =     grid  .  length  ;      // Min heap to implement Dijkstra      const     pq     =     new     PriorityQueue  (  comparator  )      // 2D grid to store minimum cost      // to reach every cell.      let     cost     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  Infinity  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];      // Direction vector to move in 4 directions      let     dir     =     [[  -  1       0  ]     [  1       0  ]     [  0       -  1  ]     [  0       1  ]];      pq  .  enqueue  ([  grid  [  0  ][  0  ]     0       0  ]);      while     (  !  pq  .  isEmpty  ())     {      let     [  c       i       j  ]     =     pq  .  dequeue  ();      // Check for all 4 neighbouring cells.      for     (  let     d     of     dir  )     {      let     x     =     i     +     d  [  0  ];      let     y     =     j     +     d  [  1  ];      // If cell is valid and cost to reach this cell      // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {      // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];      // Push the cell into heap.      pq  .  enqueue  ([  cost  [  x  ][  y  ]     x       y  ]);      }      }      }      // Return minimum cost to      // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];   }   let     grid     =     [      [  9       4       9       9  ]      [  6       7       6       4  ]      [  8       3       3       7  ]      [  7       4       9       10  ]      ];   console  .  log  (  minimumCostPath  (  grid  ));   

Producción
43  

Complejidad del tiempo: O(n^2 registro(n^2))
Espacio Auxiliar: O(n^2 registro(n^2))

¿Por qué no se puede utilizar la programación dinámica?

La programación dinámica falla aquí porque permitir el movimiento en las cuatro direcciones crea ciclos en los que las células pueden revisarse rompiendo el supuesto de subestructura óptima. Esto significa que el costo para llegar a una celda desde una celda determinada no es fijo sino que depende de todo el camino.

Artículos relacionados:

Ruta de costo mínimo

Crear cuestionario

Artículos Más Populares

Categoría

Artículos De Interés