Subsecuencia más larga tal que la diferencia entre adyacentes sea uno

Subsecuencia más larga tal que la diferencia entre adyacentes sea uno
Pruébalo en GfG Practice

dado un a arreglo de matriz[] de talla n la tarea es encontrar el subsecuencia más larga tal que el diferencia absoluta entre elementos adyacentes es 1.

Ejemplos: 

Aporte: arreglo[] = [10 9 4 5 4 8 6]
Producción: 3
Explicación: Las tres posibles subsecuencias de longitud 3 son [10 9 8] [4 5 4] y [4 5 6] donde los elementos adyacentes tienen una diferencia absoluta de 1. No se pudo formar ninguna subsecuencia válida de mayor longitud.

Aporte: arreglo[] = [1 2 3 4 5]
Producción: 5
Explicación: Todos los elementos pueden incluirse en la subsecuencia válida.

Uso de la recursividad: tiempo O(2^n) y espacio O(n)

Para el enfoque recursivo consideraremos dos casos en cada paso:

  • Si el elemento satisface la condición (el diferencia absoluta entre elementos adyacentes es 1) nosotros incluir en la subsecuencia y pasar a la próximo elemento.
  • más nosotros saltar el actual elemento y pasar al siguiente.

Matemáticamente el relación de recurrencia se verá así:

  • lowerSubseq(arr idx prev) = max(longestSubseq(arr idx + 1 prev) 1 + longSubseq(arr idx + 1 idx))

Caso base:

  • Cuando idx == arreglo.tamaño() tenemos alcanzó el final de la matriz así regresar 0 (ya que no se pueden incluir más elementos).
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   #include          using     namespace     std  ;   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -1       arr  );   }   int     main  ()     {      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   import     java.util.ArrayList  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion.   def   subseq_helper  (  idx     prev     arr  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr  )   # Return the maximum of the two options   return   max  (  take     no_take  )   def   longest_subseq  (  arr  ):   # Start recursion from index 0    # with no previous element   return   subseq_helper  (  0     -  1     arr  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev           List   <  int  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  Max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     SubseqHelper  (  0       -  1       arr  );      }      static     void     Main  (  string  []     args  )     {          List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion.   function     subseqHelper  (  idx       prev       arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );   }   function     longestSubseq  (  arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Producción
3 

Uso de DP de arriba hacia abajo (memorización ) -  O(n^2)  tiempo y  O(n^2)  Espacio

Si observamos con atención, podemos observar que la solución recursiva anterior tiene las siguientes dos propiedades de  Programación dinámica :

1. Subestructura óptima: La solución para encontrar la subsecuencia más larga tal que la diferencia entre elementos adyacentes se puede derivar la solución óptima de subproblemas más pequeños. Específicamente para cualquier identificación (índice actual) y anterior (índice anterior en la subsecuencia) podemos expresar la relación recursiva de la siguiente manera:

  • subseqHelper(idx anterior) = max(subseqHelper(idx + 1 anterior) 1 + subseqHelper(idx + 1 idx))

2. Subproblemas superpuestos: Al implementar un recursivo enfoque para resolver el problema observamos que muchos subproblemas se calculan varias veces. Por ejemplo al calcular subseqAyudante(0 -1) para una matriz llegada = [10 9 4 5] el subproblema subseqAyudante(2 -1) puede ser calculado múltiple veces. Para evitar esta repetición utilizamos la memorización para almacenar los resultados de subproblemas previamente calculados.

La solución recursiva implica dos parámetros:

  • identificación (el índice actual en la matriz).
  • anterior (el índice del último elemento incluido en la subsecuencia).

Necesitamos rastrear ambos parametros entonces creamos un nota de matriz 2D de tamaño (n) x (n+1) . Inicializamos el Nota de matriz 2D con -1 para indicar que aún no se han calculado subproblemas. Antes de calcular un resultado comprobamos si el valor en nota[idx][anterior+1] es -1. Si es así, calculamos y almacenar el resultado. De lo contrario devolvemos el resultado almacenado.

C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   #include          using     namespace     std  ;   // Helper function to recursively find the subsequence   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr           vector   <  vector   <  int  >>&     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      return     memo  [  idx  ][  prev     +     1  ]     =     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      vector   <  vector   <  int  >>     memo  (  n       vector   <  int  >  (  n     +     1       -1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -1       arr       memo  );   }   int     main  ()     {      // Input array of integers      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   import     java.util.ArrayList  ;   import     java.util.Arrays  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr           int  [][]     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      int  [][]     memo     =     new     int  [  n  ][  n     +     1  ]  ;      for     (  int  []     row     :     memo  )     {      Arrays  .  fill  (  row       -  1  );      }      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion with memoization.   def   subseq_helper  (  idx     prev     arr     memo  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Check if the result is already computed   if   memo  [  idx  ][  prev   +   1  ]   !=   -  1  :   return   memo  [  idx  ][  prev   +   1  ]   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr     memo  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr     memo  )   # Store the result in the memo table   memo  [  idx  ][  prev   +   1  ]   =   max  (  take     no_take  )   # Return the stored result   return   memo  [  idx  ][  prev   +   1  ]   def   longest_subseq  (  arr  ):   n   =   len  (  arr  )   # Create a memoization table initialized to -1   memo   =   [[  -  1   for   _   in   range  (  n   +   1  )]   for   _   in   range  (  n  )]   # Start recursion from index 0 with    # no previous element   return   subseq_helper  (  0     -  1     arr     memo  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev        List   <  int  >     arr       int  []     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx       prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx       prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx       prev     +     1  ]     =     Math  .  Max  (  take       noTake  );      // Return the stored result      return     memo  [  idx       prev     +     1  ];      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {          int     n     =     arr  .  Count  ;          // Create a memoization table initialized to -1      int  []     memo     =     new     int  [  n       n     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <=     n  ;     j  ++  )     {      memo  [  i       j  ]     =     -  1  ;      }      }      // Start recursion from index 0 with no previous element      return     SubseqHelper  (  0       -  1       arr       memo  );      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion with memoization.   function     subseqHelper  (  idx       prev       arr       memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !==     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ];   }   function     longestSubseq  (  arr  )     {      let     n     =     arr  .  length  ;          // Create a memoization table initialized to -1      let     memo     =      Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n     +     1  ).  fill  (  -  1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Producción
3 

Uso de DP ascendente (tabulación) -   En)  tiempo y  En)  Espacio

El enfoque es similar al recursivo método, pero en lugar de dividir el problema de forma recursiva, construimos iterativamente la solución en un manera ascendente.
En lugar de utilizar la recursividad utilizamos un mapa hash tabla de programación dinámica basada (dp) para almacenar el longitudes de las subsecuencias más largas. Esto nos ayuda a calcular y actualizar eficientemente el subsecuencia longitudes para todos los valores posibles de los elementos de la matriz.

Relación de programación dinámica:

dp[x] representa el longitud de la subsecuencia más larga que termina con el elemento x.

Para cada elemento llegar[yo] en la matriz: si llegada[i] + 1 o arreglo[i] - 1 existe en dp:

  • dp[arr[i]] = 1 + máx(dp[arr[i] + 1] dp[arr[i] - 1]);

Esto significa que podemos extender las subsecuencias que terminan en llegada[i] + 1 o arreglo[i] - 1 por incluido llegar[i].

De lo contrario, comience una nueva subsecuencia:

  • dp[arr[i]] = 1;
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // Tabulation.   #include          using     namespace     std  ;   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Base case: if the array has only       // one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      unordered_map   <  int       int  >     dp  ;      int     ans     =     1  ;      // Loop through the array to fill the map      // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {          // Check if the current element is adjacent      // to another subsequence      if     (  dp  .  count  (  arr  [  i  ]     +     1  )     >     0         ||     dp  .  count  (  arr  [  i  ]     -     1  )     >     0  )     {          dp  [  arr  [  i  ]]     =     1     +         max  (  dp  [  arr  [  i  ]     +     1  ]     dp  [  arr  [  i  ]     -     1  ]);      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }          // Update the result with the maximum      // subsequence length      ans     =     max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   import     java.util.HashMap  ;   import     java.util.ArrayList  ;   class   GfG     {      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      HashMap   <  Integer       Integer  >     dp     =     new     HashMap   <>  ();      int     ans     =     1  ;      // Loop through the array to fill the map       // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent       // to another subsequence      if     (  dp  .  containsKey  (  arr  .  get  (  i  )     +     1  )         ||     dp  .  containsKey  (  arr  .  get  (  i  )     -     1  ))     {      dp  .  put  (  arr  .  get  (  i  )     1     +         Math  .  max  (  dp  .  getOrDefault  (  arr  .  get  (  i  )     +     1       0  )         dp  .  getOrDefault  (  arr  .  get  (  i  )     -     1       0  )));      }         else     {      dp  .  put  (  arr  .  get  (  i  )     1  );         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  .  get  (  arr  .  get  (  i  )));      }      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );          System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python code to find the longest subsequence such that   # the difference between adjacent elements is    # one using Tabulation.   def   longestSubseq  (  arr  ):   n   =   len  (  arr  )   # Base case: if the array has only one element   if   n   ==   1  :   return   1   # Dictionary to store the length of the    # longest subsequence   dp   =   {}   ans   =   1   for   i   in   range  (  n  ):   # Check if the current element is adjacent to    # another subsequence   if   arr  [  i  ]   +   1   in   dp   or   arr  [  i  ]   -   1   in   dp  :   dp  [  arr  [  i  ]]   =   1   +   max  (  dp  .  get  (  arr  [  i  ]   +   1     0  )    dp  .  get  (  arr  [  i  ]   -   1     0  ))   else  :   dp  [  arr  [  i  ]]   =   1   # Update the result with the maximum   # subsequence length   ans   =   max  (  ans     dp  [  arr  [  i  ]])   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longestSubseq  (  arr  ))   
C#
   // C# code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      static     int     longestSubseq  (  List   <  int  >     arr  )     {      int     n     =     arr  .  Count  ;      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      Dictionary   <  int       int  >     dp     =     new     Dictionary   <  int       int  >  ();      int     ans     =     1  ;      // Loop through the array to fill the map with       // subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent to      // another subsequence      if     (  dp  .  ContainsKey  (  arr  [  i  ]     +     1  )     ||     dp  .  ContainsKey  (  arr  [  i  ]     -     1  ))     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  Max  (  dp  .  GetValueOrDefault  (  arr  [  i  ]     +     1       0  )      dp  .  GetValueOrDefault  (  arr  [  i  ]     -     1       0  ));      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  Max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  longestSubseq  (  arr  ));      }   }   
JavaScript
   // Function to find the longest subsequence such that   // the difference between adjacent elements   // is one using Tabulation.   function     longestSubseq  (  arr  )     {      const     n     =     arr  .  length  ;      // Base case: if the array has only one element      if     (  n     ===     1  )     {      return     1  ;      }      // Object to store the length of the      // longest subsequence      let     dp     =     {};      let     ans     =     1  ;      // Loop through the array to fill the object      // with subsequence lengths      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Check if the current element is adjacent to       // another subsequence      if     ((  arr  [  i  ]     +     1  )     in     dp     ||     (  arr  [  i  ]     -     1  )     in     dp  )     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  max  (  dp  [  arr  [  i  ]     +     1  ]      ||     0       dp  [  arr  [  i  ]     -     1  ]     ||     0  );      }     else     {      dp  [  arr  [  i  ]]     =     1  ;      }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Producción
3 
Crear cuestionario