Búsqueda por interpolación

Dada una matriz ordenada de n valores distribuidos uniformemente arr[] escriba una función para buscar un elemento particular x en la matriz. 
La búsqueda lineal encuentra el elemento en tiempo O(n) Saltar búsqueda toma O(n) tiempo y Búsqueda binaria toma tiempo O (log n). 
La búsqueda por interpolación es una mejora con respecto a Búsqueda binaria para casos en los que los valores de una matriz ordenada se distribuyen uniformemente. La interpolación construye nuevos puntos de datos dentro del rango de un conjunto discreto de puntos de datos conocidos. La búsqueda binaria siempre va al elemento central para comprobarlo. Por otro lado, la búsqueda por interpolación puede ir a diferentes ubicaciones según el valor de la clave que se busca. Por ejemplo, si el valor de la clave está más cerca del último elemento, es probable que la búsqueda por interpolación comience hacia el lado final.
Para encontrar la posición a buscar se utiliza la siguiente fórmula. 

// La idea de la fórmula es devolver un valor más alto de pos
// cuando el elemento a buscar está más cerca de arr[hi]. Y
// valor más pequeño cuando está más cerca de arr[lo]

arr[] ==> Matriz donde se deben buscar los elementos

x     ==> Elemento a buscar

lo    ==> Índice inicial en arr[]

hola    ==> Índice final en arr[]

después = el +               

Existen muchos métodos de interpolación diferentes y uno de ellos se conoce como interpolación lineal. La interpolación lineal toma dos puntos de datos que asumimos como (x1y1) y (x2y2) y la fórmula es: en el punto (xy).

Este algoritmo funciona de la misma manera que buscamos una palabra en un diccionario. El algoritmo de búsqueda por interpolación mejora el algoritmo de búsqueda binaria.  La fórmula para encontrar un valor es: K = > K es una constante que se utiliza para reducir el espacio de búsqueda. En el caso de la búsqueda binaria el valor de esta constante es: K=(bajo+alto)/2.

  

La fórmula para pos se puede derivar de la siguiente manera.

 Let's assume that the elements of the array are linearly distributed.    

General equation of line : y = m*x + c.
y is the value in the array and x is its index.

Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)

m = (arr[hi] - arr[lo] )/ (hi - lo)

subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])

Algoritmo  
El resto del algoritmo de interpolación es el mismo excepto por la lógica de partición anterior. 

  • Paso 1: En un bucle, calcule el valor de 'pos' usando la fórmula de posición de la sonda. 
  • Paso 2: Si coincide, devuelva el índice del elemento y salga. 
  • Paso 3: Si el elemento es menor que arr[pos], calcule la posición de la sonda del subconjunto izquierdo. De lo contrario, calcule lo mismo en el subconjunto derecho. 
  • Paso 4: Repita hasta que se encuentre una coincidencia o la submatriz se reduzca a cero.


A continuación se muestra la implementación del algoritmo. 

C++
   // C++ program to implement interpolation   // search with recursion   #include          using     namespace     std  ;   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   int     interpolationSearch  (  int     arr  []     int     lo       int     hi       int     x  )   {      int     pos  ;      // Since array is sorted an element present      // in array must be in range defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  double  )(  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))      *     (  x     -     arr  [  lo  ]));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      return     -1  ;   }   // Driver Code   int     main  ()   {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -1  )      cout      < <     'Element found at index '      < <     index  ;      else      cout      < <     'Element not found.'  ;      return     0  ;   }   // This code is contributed by equbalzeeshan   
C
   // C program to implement interpolation search   // with recursion   #include         // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   int     interpolationSearch  (  int     arr  []     int     lo       int     hi       int     x  )   {      int     pos  ;      // Since array is sorted an element present      // in array must be in range defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  double  )(  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))      *     (  x     -     arr  [  lo  ]));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      return     -1  ;   }   // Driver Code   int     main  ()   {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     x     =     18  ;     // Element to be searched      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -1  )      printf  (  'Element found at index %d'       index  );      else      printf  (  'Element not found.'  );      return     0  ;   }   
Java
   // Java program to implement interpolation   // search with recursion   import     java.util.*  ;   class   GFG     {      // If x is present in arr[0..n-1] then returns      // index of it else returns -1.      public     static     int     interpolationSearch  (  int     arr  []       int     lo        int     hi       int     x  )      {      int     pos  ;      // Since array is sorted an element      // present in array must be in range      // defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ]  )     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]  ))      *     (  x     -     arr  [  lo  ]  ));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi        x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1        x  );      }      return     -  1  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     arr  .  length  ;      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -  1  )      System  .  out  .  println  (  'Element found at index '      +     index  );      else      System  .  out  .  println  (  'Element not found.'  );      }   }   // This code is contributed by equbalzeeshan   
Python
   # Python3 program to implement   # interpolation search   # with recursion   # If x is present in arr[0..n-1] then   # returns index of it else returns -1.   def   interpolationSearch  (  arr     lo     hi     x  ):   # Since array is sorted an element present   # in array must be in range defined by corner   if   (  lo    <=   hi   and   x   >=   arr  [  lo  ]   and   x    <=   arr  [  hi  ]):   # Probing the position with keeping   # uniform distribution in mind.   pos   =   lo   +   ((  hi   -   lo  )   //   (  arr  [  hi  ]   -   arr  [  lo  ])   *   (  x   -   arr  [  lo  ]))   # Condition of target found   if   arr  [  pos  ]   ==   x  :   return   pos   # If x is larger x is in right subarray   if   arr  [  pos  ]    <   x  :   return   interpolationSearch  (  arr     pos   +   1     hi     x  )   # If x is smaller x is in left subarray   if   arr  [  pos  ]   >   x  :   return   interpolationSearch  (  arr     lo     pos   -   1     x  )   return   -  1   # Driver code   # Array of items in which   # search will be conducted   arr   =   [  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  ]   n   =   len  (  arr  )   # Element to be searched   x   =   18   index   =   interpolationSearch  (  arr     0     n   -   1     x  )   if   index   !=   -  1  :   print  (  'Element found at index'     index  )   else  :   print  (  'Element not found'  )   # This code is contributed by Hardik Jain   
C#
   // C# program to implement    // interpolation search   using     System  ;   class     GFG  {   // If x is present in    // arr[0..n-1] then    // returns index of it    // else returns -1.   static     int     interpolationSearch  (  int     []  arr       int     lo           int     hi       int     x  )   {      int     pos  ;          // Since array is sorted an element      // present in array must be in range      // defined by corner      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&         x      <=     arr  [  hi  ])      {          // Probing the position       // with keeping uniform       // distribution in mind.      pos     =     lo     +     (((  hi     -     lo  )     /         (  arr  [  hi  ]     -     arr  [  lo  ]))     *         (  x     -     arr  [  lo  ]));      // Condition of       // target found      if  (  arr  [  pos  ]     ==     x  )         return     pos  ;             // If x is larger x is in right sub array       if  (  arr  [  pos  ]      <     x  )         return     interpolationSearch  (  arr       pos     +     1        hi       x  );             // If x is smaller x is in left sub array       if  (  arr  [  pos  ]     >     x  )         return     interpolationSearch  (  arr       lo           pos     -     1       x  );         }         return     -  1  ;   }   // Driver Code    public     static     void     Main  ()      {          // Array of items on which search will       // be conducted.       int     []  arr     =     new     int  []{     10       12       13       16       18           19       20       21       22       23           24       33       35       42       47     };          // Element to be searched       int     x     =     18  ;         int     n     =     arr  .  Length  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );          // If element was found      if     (  index     !=     -  1  )      Console  .  WriteLine  (  'Element found at index '     +         index  );      else      Console  .  WriteLine  (  'Element not found.'  );   }   }   // This code is contributed by equbalzeeshan   
JavaScript
    <  script  >   // Javascript program to implement Interpolation Search   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   function     interpolationSearch  (  arr       lo       hi       x  ){      let     pos  ;          // Since array is sorted an element present      // in array must be in range defined by corner          if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ])     {          // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo     +     Math  .  floor  (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]))     *     (  x     -     arr  [  lo  ]));;          // Condition of target found      if     (  arr  [  pos  ]     ==     x  ){      return     pos  ;      }          // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  ){      return     interpolationSearch  (  arr       pos     +     1       hi       x  );      }          // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  ){      return     interpolationSearch  (  arr       lo       pos     -     1       x  );      }      }      return     -  1  ;   }   // Driver Code   let     arr     =     [  10       12       13       16       18       19       20       21           22       23       24       33       35       42       47  ];   let     n     =     arr  .  length  ;   // Element to be searched   let     x     =     18   let     index     =     interpolationSearch  (  arr       0       n     -     1       x  );   // If element was found   if     (  index     !=     -  1  ){      document  .  write  (  `Element found at index   ${  index  }  `  )   }  else  {      document  .  write  (  'Element not found'  );   }   // This code is contributed by _saurabh_jaiswal    <  /script>   
PHP
      // PHP program to implement $erpolation search   // with recursion   // If x is present in arr[0..n-1] then returns   // index of it else returns -1.   function   interpolationSearch  (  $arr     $lo     $hi     $x  )   {   // Since array is sorted an element present   // in array must be in range defined by corner   if   (  $lo    <=   $hi   &&   $x   >=   $arr  [  $lo  ]   &&   $x    <=   $arr  [  $hi  ])   {   // Probing the position with keeping   // uniform distribution in mind.   $pos   =   (  int  )(  $lo   +   (((  double  )(  $hi   -   $lo  )   /   (  $arr  [  $hi  ]   -   $arr  [  $lo  ]))   *   (  $x   -   $arr  [  $lo  ])));   // Condition of target found   if   (  $arr  [  $pos  ]   ==   $x  )   return   $pos  ;   // If x is larger x is in right sub array   if   (  $arr  [  $pos  ]    <   $x  )   return   interpolationSearch  (  $arr     $pos   +   1     $hi     $x  );   // If x is smaller x is in left sub array   if   (  $arr  [  $pos  ]   >   $x  )   return   interpolationSearch  (  $arr     $lo     $pos   -   1     $x  );   }   return   -  1  ;   }   // Driver Code   // Array of items on which search will   // be conducted.   $arr   =   array  (  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  );   $n   =   sizeof  (  $arr  );   $x   =   47  ;   // Element to be searched   $index   =   interpolationSearch  (  $arr     0     $n   -   1     $x  );   // If element was found   if   (  $index   !=   -  1  )   echo   'Element found at index '  .  $index  ;   else   echo   'Element not found.'  ;   return   0  ;   #This code is contributed by Susobhan Akhuli   ?>   

Producción
Element found at index 4 

Complejidad del tiempo: O(registro 2 (registro 2 n)) para el caso promedio y O(n) para el peor caso 
Complejidad del espacio auxiliar: O(1)

Otro enfoque: -

Este es el enfoque de iteración para la búsqueda por interpolación.

  • Paso 1: En un bucle, calcule el valor de 'pos' usando la fórmula de posición de la sonda. 
  • Paso 2: Si coincide, devuelva el índice del elemento y salga. 
  • Paso 3: Si el elemento es menor que arr[pos], calcule la posición de la sonda del subconjunto izquierdo. De lo contrario, calcule lo mismo en el subconjunto derecho. 
  • Paso 4: Repita hasta que se encuentre una coincidencia o la submatriz se reduzca a cero.

A continuación se muestra la implementación del algoritmo. 

C++
   // C++ program to implement interpolation search by using iteration approach   #include       using     namespace     std  ;       int     interpolationSearch  (  int     arr  []     int     n       int     x  )   {      // Find indexes of two corners      int     low     =     0       high     =     (  n     -     1  );      // Since array is sorted an element present      // in array must be in range defined by corner      while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])      {      if     (  low     ==     high  )      {  if     (  arr  [  low  ]     ==     x  )     return     low  ;      return     -1  ;      }      // Probing the position with keeping      // uniform distribution in mind.      int     pos     =     low     +     (((  double  )(  high     -     low  )     /      (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ]));          // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in upper part      if     (  arr  [  pos  ]      <     x  )      low     =     pos     +     1  ;      // If x is smaller x is in the lower part      else      high     =     pos     -     1  ;      }      return     -1  ;   }       // Main function   int     main  ()   {      // Array of items on whighch search will      // be conducted.      int     arr  []     =     {  10       12       13       16       18       19       20       21        22       23       24       33       35       42       47  };      int     n     =     sizeof  (  arr  )  /  sizeof  (  arr  [  0  ]);          int     x     =     18  ;     // Element to be searched      int     index     =     interpolationSearch  (  arr       n       x  );          // If element was found      if     (  index     !=     -1  )      cout      < <     'Element found at index '      < <     index  ;      else      cout      < <     'Element not found.'  ;      return     0  ;   }      //this code contributed by Ajay Singh   
Java
   // Java program to implement interpolation   // search with recursion   import     java.util.*  ;   class   GFG     {      // If x is present in arr[0..n-1] then returns      // index of it else returns -1.      public     static     int     interpolationSearch  (  int     arr  []       int     lo        int     hi       int     x  )      {      int     pos  ;      if     (  lo      <=     hi     &&     x     >=     arr  [  lo  ]     &&     x      <=     arr  [  hi  ]  )     {      // Probing the position with keeping      // uniform distribution in mind.      pos     =     lo      +     (((  hi     -     lo  )     /     (  arr  [  hi  ]     -     arr  [  lo  ]  ))      *     (  x     -     arr  [  lo  ]  ));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )      return     pos  ;      // If x is larger x is in right sub array      if     (  arr  [  pos  ]      <     x  )      return     interpolationSearch  (  arr       pos     +     1       hi        x  );      // If x is smaller x is in left sub array      if     (  arr  [  pos  ]     >     x  )      return     interpolationSearch  (  arr       lo       pos     -     1        x  );      }      return     -  1  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      // Array of items on which search will      // be conducted.      int     arr  []     =     {     10       12       13       16       18       19       20       21        22       23       24       33       35       42       47     };      int     n     =     arr  .  length  ;      // Element to be searched      int     x     =     18  ;      int     index     =     interpolationSearch  (  arr       0       n     -     1       x  );      // If element was found      if     (  index     !=     -  1  )      System  .  out  .  println  (  'Element found at index '      +     index  );      else      System  .  out  .  println  (  'Element not found.'  );      }   }   
Python
   # Python equivalent of above C++ code    # Python program to implement interpolation search by using iteration approach   def   interpolationSearch  (  arr     n     x  ):   # Find indexes of two corners    low   =   0   high   =   (  n   -   1  )   # Since array is sorted an element present    # in array must be in range defined by corner    while   low    <=   high   and   x   >=   arr  [  low  ]   and   x    <=   arr  [  high  ]:   if   low   ==   high  :   if   arr  [  low  ]   ==   x  :   return   low  ;   return   -  1  ;   # Probing the position with keeping    # uniform distribution in mind.    pos   =   int  (  low   +   (((  float  (  high   -   low  )  /  (   arr  [  high  ]   -   arr  [  low  ]))   *   (  x   -   arr  [  low  ]))))   # Condition of target found    if   arr  [  pos  ]   ==   x  :   return   pos   # If x is larger x is in upper part    if   arr  [  pos  ]    <   x  :   low   =   pos   +   1  ;   # If x is smaller x is in lower part    else  :   high   =   pos   -   1  ;   return   -  1   # Main function   if   __name__   ==   '__main__'  :   # Array of items on whighch search will    # be conducted.   arr   =   [  10     12     13     16     18     19     20     21     22     23     24     33     35     42     47  ]   n   =   len  (  arr  )   x   =   18   # Element to be searched   index   =   interpolationSearch  (  arr     n     x  )   # If element was found   if   index   !=   -  1  :   print   (  'Element found at index'    index  )   else  :   print   (  'Element not found'  )   
C#
   // C# program to implement interpolation search by using   // iteration approach   using     System  ;   class     Program   {      // Interpolation Search function      static     int     InterpolationSearch  (  int  []     arr       int     n       int     x  )      {      int     low     =     0  ;      int     high     =     n     -     1  ;          while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])         {      if     (  low     ==     high  )         {      if     (  arr  [  low  ]     ==     x  )         return     low  ;         return     -  1  ;         }          int     pos     =     low     +     (  int  )(((  float  )(  high     -     low  )     /     (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ]));          if     (  arr  [  pos  ]     ==     x  )         return     pos  ;             if     (  arr  [  pos  ]      <     x  )         low     =     pos     +     1  ;             else         high     =     pos     -     1  ;         }          return     -  1  ;      }          // Main function      static     void     Main  (  string  []     args  )      {      int  []     arr     =     {  10       12       13       16       18       19       20       21       22       23       24       33       35       42       47  };      int     n     =     arr  .  Length  ;          int     x     =     18  ;      int     index     =     InterpolationSearch  (  arr       n       x  );          if     (  index     !=     -  1  )         Console  .  WriteLine  (  'Element found at index '     +     index  );      else         Console  .  WriteLine  (  'Element not found'  );      }   }   // This code is contributed by Susobhan Akhuli   
JavaScript
   // JavaScript program to implement interpolation search by using iteration approach   function     interpolationSearch  (  arr       n       x  )     {   // Find indexes of two corners   let     low     =     0  ;   let     high     =     n     -     1  ;   // Since array is sorted an element present   // in array must be in range defined by corner   while     (  low      <=     high     &&     x     >=     arr  [  low  ]     &&     x      <=     arr  [  high  ])     {      if     (  low     ==     high  )     {      if     (  arr  [  low  ]     ==     x  )     {      return     low  ;      }      return     -  1  ;      }      // Probing the position with keeping      // uniform distribution in mind.      let     pos     =     Math  .  floor  (  low     +     (((  high     -     low  )     /     (  arr  [  high  ]     -     arr  [  low  ]))     *     (  x     -     arr  [  low  ])));      // Condition of target found      if     (  arr  [  pos  ]     ==     x  )     {      return     pos  ;      }      // If x is larger x is in upper part      if     (  arr  [  pos  ]      <     x  )     {      low     =     pos     +     1  ;      }      // If x is smaller x is in lower part      else     {      high     =     pos     -     1  ;      }   }   return     -  1  ;   }   // Main function   let     arr     =     [  10       12       13       16       18       19       20       21       22       23       24       33       35       42       47  ];   let     n     =     arr  .  length  ;   let     x     =     18  ;     // Element to be searched   let     index     =     interpolationSearch  (  arr       n       x  );   // If element was found   if     (  index     !=     -  1  )     {   console  .  log  (  'Element found at index'       index  );   }     else     {   console  .  log  (  'Element not found'  );   }   

Producción
Element found at index 4 

Complejidad del tiempo: O(log2(log2 n)) para el caso promedio y O(n) para el peor de los casos 
Complejidad del espacio auxiliar: O(1)