Reverse-Delete-Algorithmus für Minimum Spanning Tree

Reverse-Delete-Algorithmus für Minimum Spanning Tree
Probieren Sie es bei GfG Practice aus Reverse-Delete-Algorithmus für Minimum Spanning Tree #practiceLinkDiv { display: none !important; }

Der Reverse-Delete-Algorithmus ist eng damit verbunden Kruskals Algorithmus . Was wir im Kruskal-Algorithmus tun, ist: Kanten nach aufsteigender Reihenfolge ihrer Gewichte sortieren. Nach dem Sortieren wählen wir die Kanten nacheinander in aufsteigender Reihenfolge aus. Wir beziehen die aktuell ausgewählte Kante mit ein, wenn wir diese in den Spanning Tree aufnehmen und keinen Zyklus bilden, bis es V-1 Kanten im Spanning Tree gibt, wobei V = Anzahl der Scheitelpunkte ist.

Im Reverse-Delete-Algorithmus sortieren wir alle Kanten ein abnehmend Reihenfolge ihrer Gewichte. Nach dem Sortieren wählen wir die Kanten nacheinander in absteigender Reihenfolge aus. Wir Aktuelle ausgewählte Kante einbeziehen, wenn das Ausschließen der aktuellen Kante zu einer Verbindungsunterbrechung im aktuellen Diagramm führt . Die Hauptidee besteht darin, die Kante zu löschen, wenn ihre Löschung nicht zur Trennung des Diagramms führt.

Der Algorithmus:

  1. Sortieren Sie alle Kanten des Diagramms in nicht aufsteigender Reihenfolge der Kantengewichte.
  2. Initialisieren Sie MST als Originaldiagramm und entfernen Sie zusätzliche Kanten mit Schritt 3.
  3. Wählen Sie die Kante mit dem höchsten Gewicht aus den verbleibenden Kanten aus und Überprüfen Sie, ob durch das Löschen der Kante die Verbindung zum Diagramm unterbrochen wird oder nicht .
     Bei Verbindungsabbrüchen löschen wir die Kante nicht.
    Andernfalls löschen wir die Kante und fahren fort. 

Illustration:  

Lassen Sie es uns anhand des folgenden Beispiels verstehen:

reversedelete2


Wenn wir die höchste Gewichtungskante der Gewichtung 14 löschen, wird die Verbindung nicht getrennt, also entfernen wir sie. 
 

reversedelete3


Als nächstes löschen wir 11, da durch das Löschen die Verbindung zum Diagramm nicht unterbrochen wird. 
 

reversedelete4


Als nächstes löschen wir 10, da durch das Löschen die Verbindung zum Diagramm nicht unterbrochen wird. 
 

reversedelete5


Als nächstes kommt 9. Wir können 9 nicht löschen, da das Löschen zu einer Verbindungsunterbrechung führt. 
 


Wir machen auf diese Weise weiter und die folgenden Kanten bleiben im endgültigen MST. 

 Edges in MST   
(3 4)
(0 7)
(2 3)
(2 5)
(0 1)
(5 6)
(2 8)
(6 7)

Notiz : Bei gleichgewichtigen Kanten können wir jede beliebige Kante mit gleichgewichtigen Kanten auswählen.

Empfohlene Praxis Reverse-Delete-Algorithmus für Minimum Spanning Tree Probieren Sie es aus!

Durchführung:

C++
   // C++ program to find Minimum Spanning Tree   // of a graph using Reverse Delete Algorithm   #include       using     namespace     std  ;   // Creating shortcut for an integer pair   typedef     pair   <  int       int  >     iPair  ;   // Graph class represents a directed graph   // using adjacency list representation   class     Graph   {      int     V  ;     // No. of vertices      list   <  int  >     *  adj  ;      vector   <     pair   <  int       iPair  >     >     edges  ;      void     DFS  (  int     v       bool     visited  []);   public  :      Graph  (  int     V  );     // Constructor      // function to add an edge to graph      void     addEdge  (  int     u       int     v       int     w  );      // Returns true if graph is connected      bool     isConnected  ();      void     reverseDeleteMST  ();   };   Graph  ::  Graph  (  int     V  )   {      this  ->  V     =     V  ;      adj     =     new     list   <  int  >  [  V  ];   }   void     Graph  ::  addEdge  (  int     u       int     v       int     w  )   {      adj  [  u  ].  push_back  (  v  );     // Add w to v’s list.      adj  [  v  ].  push_back  (  u  );     // Add w to v’s list.      edges  .  push_back  ({  w       {  u       v  }});   }   void     Graph  ::  DFS  (  int     v       bool     visited  [])   {      // Mark the current node as visited and print it      visited  [  v  ]     =     true  ;      // Recur for all the vertices adjacent to      // this vertex      list   <  int  >::  iterator     i  ;      for     (  i     =     adj  [  v  ].  begin  ();     i     !=     adj  [  v  ].  end  ();     ++  i  )      if     (  !  visited  [  *  i  ])      DFS  (  *  i       visited  );   }   // Returns true if given graph is connected else false   bool     Graph  ::  isConnected  ()   {      bool     visited  [  V  ];      memset  (  visited       false       sizeof  (  visited  ));      // Find all reachable vertices from first vertex      DFS  (  0       visited  );      // If set of reachable vertices includes all      // return true.      for     (  int     i  =  1  ;     i   <  V  ;     i  ++  )      if     (  visited  [  i  ]     ==     false  )      return     false  ;      return     true  ;   }   // This function assumes that edge (u v)   // exists in graph or not   void     Graph  ::  reverseDeleteMST  ()   {      // Sort edges in increasing order on basis of cost      sort  (  edges  .  begin  ()     edges  .  end  ());      int     mst_wt     =     0  ;     // Initialize weight of MST      cout      < <     'Edges in MST  n  '  ;      // Iterate through all sorted edges in      // decreasing order of weights      for     (  int     i  =  edges  .  size  ()  -1  ;     i  >=  0  ;     i  --  )      {      int     u     =     edges  [  i  ].  second  .  first  ;      int     v     =     edges  [  i  ].  second  .  second  ;      // Remove edge from undirected graph      adj  [  u  ].  remove  (  v  );      adj  [  v  ].  remove  (  u  );      // Adding the edge back if removing it      // causes disconnection. In this case this       // edge becomes part of MST.      if     (  isConnected  ()     ==     false  )      {      adj  [  u  ].  push_back  (  v  );      adj  [  v  ].  push_back  (  u  );      // This edge is part of MST      cout      < <     '('      < <     u      < <     ' '      < <     v      < <     ')   n  '  ;      mst_wt     +=     edges  [  i  ].  first  ;      }      }      cout      < <     'Total weight of MST is '      < <     mst_wt  ;   }   // Driver code   int     main  ()   {      // create the graph given in above figure      int     V     =     9  ;      Graph     g  (  V  );      // making above shown graph      g  .  addEdge  (  0       1       4  );      g  .  addEdge  (  0       7       8  );      g  .  addEdge  (  1       2       8  );      g  .  addEdge  (  1       7       11  );      g  .  addEdge  (  2       3       7  );      g  .  addEdge  (  2       8       2  );      g  .  addEdge  (  2       5       4  );      g  .  addEdge  (  3       4       9  );      g  .  addEdge  (  3       5       14  );      g  .  addEdge  (  4       5       10  );      g  .  addEdge  (  5       6       2  );      g  .  addEdge  (  6       7       1  );      g  .  addEdge  (  6       8       6  );      g  .  addEdge  (  7       8       7  );      g  .  reverseDeleteMST  ();      return     0  ;   }   
Java
   // Java program to find Minimum Spanning Tree   // of a graph using Reverse Delete Algorithm   import     java.util.*  ;   // class to represent an edge   class   Edge     implements     Comparable   <  Edge  >     {      int     u       v       w  ;      Edge  (  int     u       int     v       int     w  )      {      this  .  u     =     u  ;      this  .  w     =     w  ;      this  .  v     =     v  ;      }      public     int     compareTo  (  Edge     other  )      {      return     (  this  .  w     -     other  .  w  );      }   }   // Class to represent a graph using adjacency list   // representation   public     class   GFG     {      private     int     V  ;     // No. of vertices      private     List   <  Integer  >[]     adj  ;      private     List   <  Edge  >     edges  ;      @SuppressWarnings  ({     'unchecked'       'deprecated'     })      public     GFG  (  int     v  )     // Constructor      {      V     =     v  ;      adj     =     new     ArrayList  [  v  ]  ;      for     (  int     i     =     0  ;     i      <     v  ;     i  ++  )      adj  [  i  ]     =     new     ArrayList   <  Integer  >  ();      edges     =     new     ArrayList   <  Edge  >  ();      }      // function to Add an edge      public     void     AddEdge  (  int     u       int     v       int     w  )      {      adj  [  u  ]  .  add  (  v  );     // Add w to v’s list.      adj  [  v  ]  .  add  (  u  );     // Add w to v’s list.      edges  .  add  (  new     Edge  (  u       v       w  ));      }      // function to perform dfs      private     void     DFS  (  int     v       boolean  []     visited  )      {      // Mark the current node as visited and print it      visited  [  v  ]     =     true  ;      // Recur for all the vertices adjacent to      // this vertex      for     (  int     i     :     adj  [  v  ]  )     {      if     (  !  visited  [  i  ]  )      DFS  (  i       visited  );      }      }      // Returns true if given graph is connected else false      private     boolean     IsConnected  ()      {      boolean  []     visited     =     new     boolean  [  V  ]  ;      // Find all reachable vertices from first vertex      DFS  (  0       visited  );      // If set of reachable vertices includes all      // return true.      for     (  int     i     =     1  ;     i      <     V  ;     i  ++  )     {      if     (  visited  [  i  ]     ==     false  )      return     false  ;      }      return     true  ;      }      // This function assumes that edge (u v)      // exists in graph or not      public     void     ReverseDeleteMST  ()      {      // Sort edges in increasing order on basis of cost      Collections  .  sort  (  edges  );      int     mst_wt     =     0  ;     // Initialize weight of MST      System  .  out  .  println  (  'Edges in MST'  );      // Iterate through all sorted edges in      // decreasing order of weights      for     (  int     i     =     edges  .  size  ()     -     1  ;     i     >=     0  ;     i  --  )     {      int     u     =     edges  .  get  (  i  ).  u  ;      int     v     =     edges  .  get  (  i  ).  v  ;      // Remove edge from undirected graph      adj  [  u  ]  .  remove  (  adj  [  u  ]  .  indexOf  (  v  ));      adj  [  v  ]  .  remove  (  adj  [  v  ]  .  indexOf  (  u  ));      // Adding the edge back if removing it      // causes disconnection. In this case this      // edge becomes part of MST.      if     (  IsConnected  ()     ==     false  )     {      adj  [  u  ]  .  add  (  v  );      adj  [  v  ]  .  add  (  u  );      // This edge is part of MST      System  .  out  .  println  (  '('     +     u     +     ' '     +     v      +     ')'  );      mst_wt     +=     edges  .  get  (  i  ).  w  ;      }      }      System  .  out  .  println  (  'Total weight of MST is '      +     mst_wt  );      }      // Driver code      public     static     void     main  (  String  []     args  )      {      // create the graph given in above figure      int     V     =     9  ;      GFG     g     =     new     GFG  (  V  );      // making above shown graph      g  .  AddEdge  (  0       1       4  );      g  .  AddEdge  (  0       7       8  );      g  .  AddEdge  (  1       2       8  );      g  .  AddEdge  (  1       7       11  );      g  .  AddEdge  (  2       3       7  );      g  .  AddEdge  (  2       8       2  );      g  .  AddEdge  (  2       5       4  );      g  .  AddEdge  (  3       4       9  );      g  .  AddEdge  (  3       5       14  );      g  .  AddEdge  (  4       5       10  );      g  .  AddEdge  (  5       6       2  );      g  .  AddEdge  (  6       7       1  );      g  .  AddEdge  (  6       8       6  );      g  .  AddEdge  (  7       8       7  );      g  .  ReverseDeleteMST  ();      }   }   // This code is contributed by Prithi_Dey   
Python3
   # Python3 program to find Minimum Spanning Tree   # of a graph using Reverse Delete Algorithm   # Graph class represents a directed graph   # using adjacency list representation   class   Graph  :   def   __init__  (  self     v  ):   # No. of vertices   self  .  v   =   v   self  .  adj   =   [  0  ]   *   v   self  .  edges   =   []   for   i   in   range  (  v  ):   self  .  adj  [  i  ]   =   []   # function to add an edge to graph   def   addEdge  (  self     u  :   int     v  :   int     w  :   int  ):   self  .  adj  [  u  ]  .  append  (  v  )   # Add w to v’s list.   self  .  adj  [  v  ]  .  append  (  u  )   # Add w to v’s list.   self  .  edges  .  append  ((  w     (  u     v  )))   def   dfs  (  self     v  :   int     visited  :   list  ):   # Mark the current node as visited and print it   visited  [  v  ]   =   True   # Recur for all the vertices adjacent to   # this vertex   for   i   in   self  .  adj  [  v  ]:   if   not   visited  [  i  ]:   self  .  dfs  (  i     visited  )   # Returns true if graph is connected   # Returns true if given graph is connected else false   def   connected  (  self  ):   visited   =   [  False  ]   *   self  .  v   # Find all reachable vertices from first vertex   self  .  dfs  (  0     visited  )   # If set of reachable vertices includes all   # return true.   for   i   in   range  (  1     self  .  v  ):   if   not   visited  [  i  ]:   return   False   return   True   # This function assumes that edge (u v)   # exists in graph or not   def   reverseDeleteMST  (  self  ):   # Sort edges in increasing order on basis of cost   self  .  edges  .  sort  (  key   =   lambda   a  :   a  [  0  ])   mst_wt   =   0   # Initialize weight of MST   print  (  'Edges in MST'  )   # Iterate through all sorted edges in   # decreasing order of weights   for   i   in   range  (  len  (  self  .  edges  )   -   1     -  1     -  1  ):   u   =   self  .  edges  [  i  ][  1  ][  0  ]   v   =   self  .  edges  [  i  ][  1  ][  1  ]   # Remove edge from undirected graph   self  .  adj  [  u  ]  .  remove  (  v  )   self  .  adj  [  v  ]  .  remove  (  u  )   # Adding the edge back if removing it   # causes disconnection. In this case this   # edge becomes part of MST.   if   self  .  connected  ()   ==   False  :   self  .  adj  [  u  ]  .  append  (  v  )   self  .  adj  [  v  ]  .  append  (  u  )   # This edge is part of MST   print  (  '(   %d     %d   )'   %   (  u     v  ))   mst_wt   +=   self  .  edges  [  i  ][  0  ]   print  (  'Total weight of MST is'     mst_wt  )   # Driver Code   if   __name__   ==   '__main__'  :   # create the graph given in above figure   V   =   9   g   =   Graph  (  V  )   # making above shown graph   g  .  addEdge  (  0     1     4  )   g  .  addEdge  (  0     7     8  )   g  .  addEdge  (  1     2     8  )   g  .  addEdge  (  1     7     11  )   g  .  addEdge  (  2     3     7  )   g  .  addEdge  (  2     8     2  )   g  .  addEdge  (  2     5     4  )   g  .  addEdge  (  3     4     9  )   g  .  addEdge  (  3     5     14  )   g  .  addEdge  (  4     5     10  )   g  .  addEdge  (  5     6     2  )   g  .  addEdge  (  6     7     1  )   g  .  addEdge  (  6     8     6  )   g  .  addEdge  (  7     8     7  )   g  .  reverseDeleteMST  ()   # This code is contributed by   # sanjeev2552   
C#
   // C# program to find Minimum Spanning Tree   // of a graph using Reverse Delete Algorithm   using     System  ;   using     System.Collections.Generic  ;   // class to represent an edge   public     class     Edge     :     IComparable   <  Edge  >     {      public     int     u       v       w  ;      public     Edge  (  int     u       int     v       int     w  )      {      this  .  u     =     u  ;      this  .  v     =     v  ;      this  .  w     =     w  ;      }      public     int     CompareTo  (  Edge     other  )      {      return     this  .  w  .  CompareTo  (  other  .  w  );      }   }   // Graph class represents a directed graph   // using adjacency list representation   public     class     Graph     {      private     int     V  ;     // No. of vertices      private     List   <  int  >  []     adj  ;      private     List   <  Edge  >     edges  ;      public     Graph  (  int     v  )     // Constructor      {      V     =     v  ;      adj     =     new     List   <  int  >  [     v     ];      for     (  int     i     =     0  ;     i      <     v  ;     i  ++  )      adj  [  i  ]     =     new     List   <  int  >  ();      edges     =     new     List   <  Edge  >  ();      }      // function to Add an edge      public     void     AddEdge  (  int     u       int     v       int     w  )      {      adj  [  u  ].  Add  (  v  );     // Add w to v’s list.      adj  [  v  ].  Add  (  u  );     // Add w to v’s list.      edges  .  Add  (  new     Edge  (  u       v       w  ));      }      // function to perform dfs      private     void     DFS  (  int     v       bool  []     visited  )      {      // Mark the current node as visited and print it      visited  [  v  ]     =     true  ;      // Recur for all the vertices adjacent to      // this vertex      foreach  (  int     i     in     adj  [  v  ])      {      if     (  !  visited  [  i  ])      DFS  (  i       visited  );      }      }      // Returns true if given graph is connected else false      private     bool     IsConnected  ()      {      bool  []     visited     =     new     bool  [  V  ];      // Find all reachable vertices from first vertex      DFS  (  0       visited  );      // If set of reachable vertices includes all      // return true.      for     (  int     i     =     1  ;     i      <     V  ;     i  ++  )     {      if     (  visited  [  i  ]     ==     false  )      return     false  ;      }      return     true  ;      }      // This function assumes that edge (u v)      // exists in graph or not      public     void     ReverseDeleteMST  ()      {      // Sort edges in increasing order on basis of cost      edges  .  Sort  ();      int     mst_wt     =     0  ;     // Initialize weight of MST      Console  .  WriteLine  (  'Edges in MST'  );      // Iterate through all sorted edges in      // decreasing order of weights      for     (  int     i     =     edges  .  Count     -     1  ;     i     >=     0  ;     i  --  )     {      int     u     =     edges  [  i  ].  u  ;      int     v     =     edges  [  i  ].  v  ;      // Remove edge from undirected graph      adj  [  u  ].  Remove  (  v  );      adj  [  v  ].  Remove  (  u  );      // Adding the edge back if removing it      // causes disconnection. In this case this      // edge becomes part of MST.      if     (  IsConnected  ()     ==     false  )     {      adj  [  u  ].  Add  (  v  );      adj  [  v  ].  Add  (  u  );      // This edge is part of MST      Console  .  WriteLine  (  '({0} {1})'       u       v  );      mst_wt     +=     edges  [  i  ].  w  ;      }      }      Console  .  WriteLine  (  'Total weight of MST is {0}'        mst_wt  );      }   }   class     GFG     {      // Driver code      static     void     Main  (  string  []     args  )      {      // create the graph given in above figure      int     V     =     9  ;      Graph     g     =     new     Graph  (  V  );      // making above shown graph      g  .  AddEdge  (  0       1       4  );      g  .  AddEdge  (  0       7       8  );      g  .  AddEdge  (  1       2       8  );      g  .  AddEdge  (  1       7       11  );      g  .  AddEdge  (  2       3       7  );      g  .  AddEdge  (  2       8       2  );      g  .  AddEdge  (  2       5       4  );      g  .  AddEdge  (  3       4       9  );      g  .  AddEdge  (  3       5       14  );      g  .  AddEdge  (  4       5       10  );      g  .  AddEdge  (  5       6       2  );      g  .  AddEdge  (  6       7       1  );      g  .  AddEdge  (  6       8       6  );      g  .  AddEdge  (  7       8       7  );      g  .  ReverseDeleteMST  ();      }   }   // This code is contributed by cavi4762   
JavaScript
   // Javascript program to find Minimum Spanning Tree   // of a graph using Reverse Delete Algorithm   // Graph class represents a directed graph   // using adjacency list representation   class     Graph     {      // Constructor      constructor  (  V  )     {      this  .  V     =     V  ;      this  .  adj     =     [];      this  .  edges     =     [];      for     (  let     i     =     0  ;     i      <     V  ;     i  ++  )     {      this  .  adj  [  i  ]     =     [];      }      }          // function to add an edge to graph      addEdge  (  u       v       w  )     {      this  .  adj  [  u  ].  push  (  v  );  // Add w to v’s list.      this  .  adj  [  v  ].  push  (  u  );  // Add w to v’s list.      this  .  edges  .  push  ([  w       [  u       v  ]]);      }      DFS  (  v       visited  )     {      // Mark the current node as visited and print it      visited  [  v  ]     =     true  ;      for     (  const     i     of     this  .  adj  [  v  ])     {      if     (  !  visited  [  i  ])     {      this  .  DFS  (  i       visited  );      }      }      }      // Returns true if given graph is connected else false      isConnected  ()     {      const     visited     =     [];      for     (  let     i     =     0  ;     i      <     this  .  V  ;     i  ++  )     {      visited  [  i  ]     =     false  ;      }          // Find all reachable vertices from first vertex      this  .  DFS  (  0       visited  );          // If set of reachable vertices includes all      // return true.      for     (  let     i     =     1  ;     i      <     this  .  V  ;     i  ++  )     {      if     (  !  visited  [  i  ])     {      return     false  ;      }      }      return     true  ;      }      // This function assumes that edge (u v)      // exists in graph or not      reverseDeleteMST  ()     {          // Sort edges in increasing order on basis of cost      this  .  edges  .  sort  ((  a       b  )     =>     a  [  0  ]     -     b  [  0  ]);          let     mstWt     =     0  ;  // Initialize weight of MST          console  .  log  (  'Edges in MST'  );          // Iterate through all sorted edges in      // decreasing order of weights      for     (  let     i     =     this  .  edges  .  length     -     1  ;     i     >=     0  ;     i  --  )     {      const     [  u       v  ]     =     this  .  edges  [  i  ][  1  ];          // Remove edge from undirected graph      this  .  adj  [  u  ]     =     this  .  adj  [  u  ].  filter  (  x     =>     x     !==     v  );      this  .  adj  [  v  ]     =     this  .  adj  [  v  ].  filter  (  x     =>     x     !==     u  );          // Adding the edge back if removing it      // causes disconnection. In this case this       // edge becomes part of MST.      if     (  !  this  .  isConnected  ())     {      this  .  adj  [  u  ].  push  (  v  );      this  .  adj  [  v  ].  push  (  u  );          // This edge is part of MST      console  .  log  (  `(  ${  u  }     ${  v  }  )`  );      mstWt     +=     this  .  edges  [  i  ][  0  ];      }      }      console  .  log  (  `Total weight of MST is   ${  mstWt  }  `  );      }   }   // Driver code   function     main  ()   {      // create the graph given in above figure      var     V     =     9  ;      var     g     =     new     Graph  (  V  );      // making above shown graph      g  .  addEdge  (  0       1       4  );      g  .  addEdge  (  0       7       8  );      g  .  addEdge  (  1       2       8  );      g  .  addEdge  (  1       7       11  );      g  .  addEdge  (  2       3       7  );      g  .  addEdge  (  2       8       2  );      g  .  addEdge  (  2       5       4  );      g  .  addEdge  (  3       4       9  );      g  .  addEdge  (  3       5       14  );      g  .  addEdge  (  4       5       10  );      g  .  addEdge  (  5       6       2  );      g  .  addEdge  (  6       7       1  );      g  .  addEdge  (  6       8       6  );      g  .  addEdge  (  7       8       7  );      g  .  reverseDeleteMST  ();   }   main  ();   

Ausgabe
Edges in MST (3 4) (0 7) (2 3) (2 5) (0 1) (5 6) (2 8) (6 7) Total weight of MST is 37  

Zeitkomplexität: O((E*(V+E)) + E log E) wobei E die Anzahl der Kanten ist.

Raumkomplexität: O(V+E) Dabei ist V die Anzahl der Eckpunkte und E die Anzahl der Kanten. Wir verwenden die Adjazenzliste zum Speichern des Diagramms, daher benötigen wir Platz proportional zu O(V+E).

Hinweise: 

  1. Die obige Implementierung ist eine einfache/naive Implementierung des Reverse-Delete-Algorithmus und kann auf O(E log V (log log V) optimiert werden. 3 ) [Quelle : Eine Woche ]. Diese optimierte Zeitkomplexität ist jedoch immer noch geringer als Prim Und Kruskal Algorithmen für MST.
  2. Die obige Implementierung ändert das ursprüngliche Diagramm. Wir können eine Kopie des Diagramms erstellen, wenn das Originaldiagramm beibehalten werden muss.

 

Quiz erstellen