Drucken der Folge mit zunehmender Maximalsumme
Das Problem der maximal summierten Teilsequenz besteht darin, die maximale Summe der Teilsequenz einer gegebenen Sequenz so zu finden, dass alle Elemente der Teilsequenz in aufsteigender Reihenfolge sortiert werden.
Beispiele:
Input: [1 101 2 3 100 4 5]
Output: [1 2 3 100]
Input: [3 4 5 10]
Output: [3 4 5 10]
Input: [10 5 4 3]
Output: [10]
Input: [3 2 6 4 5 1]
Output: [3 4 5]Im vorherigen Beitrag haben wir das Problem der maximal summenerhöhenden Teilsequenz besprochen. Der Beitrag befasste sich jedoch nur mit Code, der sich auf die Ermittlung der Maximalsumme ansteigender Teilsequenzen bezieht, nicht jedoch auf die Konstruktion von Teilsequenzen. In diesem Beitrag besprechen wir, wie man eine maximal summenerhöhende Teilsequenz selbst konstruiert.
Sei arr[0..n-1] das Eingabearray. Wir definieren den Vektor L so, dass L[i] selbst ein Vektor ist, der die maximal summenerhöhende Teilfolge von arr[0..i] speichert, die mit arr[i] endet. Daher kann L[i] für den Index i rekursiv geschrieben werden als
L[0] = {arr[0]}
L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i]
= arr[i] if there is no j such that arr[j] < arr[i]
Zum Beispiel für Array [3 2 6 4 5 1]L[0]: 3
L[1]: 2
L[2]: 3 6
L[3]: 3 4
L[4]: 3 4 5
L[5]: 1C++
Unten ist die Umsetzung der oben genannten Idee –Java/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ #include#include using namespace std ; // Utility function to calculate sum of all // vector elements int findSum ( vector < int > arr ) { int sum = 0 ; for ( int i : arr ) sum += i ; return sum ; } // Function to construct Maximum Sum Increasing // Subsequence void printMaxSumIS ( int arr [] int n ) { // L[i] - The Maximum Sum Increasing // Subsequence that ends with arr[i] vector < vector < int > > L ( n ); // L[0] is equal to arr[0] L [ 0 ]. push_back ( arr [ 0 ]); // start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // for every j less than i for ( int j = 0 ; j < i ; j ++ ) { /* L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i] */ if (( arr [ i ] > arr [ j ]) && ( findSum ( L [ i ]) < findSum ( L [ j ]))) L [ i ] = L [ j ]; } // L[i] ends with arr[i] L [ i ]. push_back ( arr [ i ]); // L[i] now stores Maximum Sum Increasing // Subsequence of arr[0..i] that ends with // arr[i] } vector < int > res = L [ 0 ]; // find max for ( vector < int > x : L ) if ( findSum ( x ) > findSum ( res )) res = x ; // max will contain result for ( int i : res ) cout < < i < < ' ' ; cout < < endl ; } // Driver Code int main () { int arr [] = { 3 2 6 4 5 1 }; int n = sizeof ( arr ) / sizeof ( arr [ 0 ]); // construct and print Max Sum IS of arr printMaxSumIS ( arr n ); return 0 ; } Python/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ import java.util.* ; class GFG { // Utility function to calculate sum of all // vector elements static int findSum ( Vector < Integer > arr ) { int sum = 0 ; for ( int i : arr ) sum += i ; return sum ; } // Function to construct Maximum Sum Increasing // Subsequence static void printMaxSumIs ( int [] arr int n ) { // L[i] - The Maximum Sum Increasing // Subsequence that ends with arr[i] @SuppressWarnings ( 'unchecked' ) Vector < Integer >[] L = new Vector [ n ] ; for ( int i = 0 ; i < n ; i ++ ) L [ i ] = new Vector <> (); // L[0] is equal to arr[0] L [ 0 ] . add ( arr [ 0 ] ); // start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // for every j less than i for ( int j = 0 ; j < i ; j ++ ) { /* * L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i] */ if (( arr [ i ] > arr [ j ] ) && ( findSum ( L [ i ] ) < findSum ( L [ j ] ))) { for ( int k : L [ j ] ) if ( ! L [ i ] . contains ( k )) L [ i ] . add ( k ); } } // L[i] ends with arr[i] L [ i ] . add ( arr [ i ] ); // L[i] now stores Maximum Sum Increasing // Subsequence of arr[0..i] that ends with // arr[i] } Vector < Integer > res = new Vector <> ( L [ 0 ] ); // res = L[0]; // find max for ( Vector < Integer > x : L ) if ( findSum ( x ) > findSum ( res )) res = x ; // max will contain result for ( int i : res ) System . out . print ( i + ' ' ); System . out . println (); } // Driver Code public static void main ( String [] args ) { int [] arr = { 3 2 6 4 5 1 }; int n = arr . length ; // construct and print Max Sum IS of arr printMaxSumIs ( arr n ); } } // This code is contributed by // sanjeev2552C## Dynamic Programming solution to construct # Maximum Sum Increasing Subsequence */ # Utility function to calculate sum of all # vector elements def findSum ( arr ): summ = 0 for i in arr : summ += i return summ # Function to construct Maximum Sum Increasing # Subsequence def printMaxSumIS ( arr n ): # L[i] - The Maximum Sum Increasing # Subsequence that ends with arr[i] L = [[] for i in range ( n )] # L[0] is equal to arr[0] L [ 0 ] . append ( arr [ 0 ]) # start from index 1 for i in range ( 1 n ): # for every j less than i for j in range ( i ): # L[i] = {MaxSum(L[j])} + arr[i] # where j < i and arr[j] < arr[i] if (( arr [ i ] > arr [ j ]) and ( findSum ( L [ i ]) < findSum ( L [ j ]))): for e in L [ j ]: if e not in L [ i ]: L [ i ] . append ( e ) # L[i] ends with arr[i] L [ i ] . append ( arr [ i ]) # L[i] now stores Maximum Sum Increasing # Subsequence of arr[0..i] that ends with # arr[i] res = L [ 0 ] # find max for x in L : if ( findSum ( x ) > findSum ( res )): res = x # max will contain result for i in res : print ( i end = ' ' ) # Driver Code arr = [ 3 2 6 4 5 1 ] n = len ( arr ) # construct and prMax Sum IS of arr printMaxSumIS ( arr n ) # This code is contributed by Mohit KumarJavaScript/* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ using System ; using System.Collections.Generic ; class GFG { // Utility function to calculate sum of all // vector elements static int findSum ( List < int > arr ) { int sum = 0 ; foreach ( int i in arr ) sum += i ; return sum ; } // Function to construct Maximum Sum Increasing // Subsequence static void printMaxSumIs ( int [] arr int n ) { // L[i] - The Maximum Sum Increasing // Subsequence that ends with arr[i] List < int > [] L = new List < int > [ n ]; for ( int i = 0 ; i < n ; i ++ ) L [ i ] = new List < int > (); // L[0] is equal to arr[0] L [ 0 ]. Add ( arr [ 0 ]); // start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // for every j less than i for ( int j = 0 ; j < i ; j ++ ) { /* * L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i] */ if (( arr [ i ] > arr [ j ]) && ( findSum ( L [ i ]) < findSum ( L [ j ]))) { foreach ( int k in L [ j ]) if ( ! L [ i ]. Contains ( k )) L [ i ] . Add ( k ); } } // L[i] ends with arr[i] L [ i ]. Add ( arr [ i ]); // L[i] now stores Maximum Sum Increasing // Subsequence of arr[0..i] that ends with // arr[i] } List < int > res = new List < int > ( L [ 0 ]); // res = L[0]; // find max foreach ( List < int > x in L ) if ( findSum ( x ) > findSum ( res )) res = x ; // max will contain result foreach ( int i in res ) Console . Write ( i + ' ' ); Console . WriteLine (); } // Driver Code public static void Main ( String [] args ) { int [] arr = { 3 2 6 4 5 1 }; int n = arr . Length ; // construct and print Max Sum IS of arr printMaxSumIs ( arr n ); } } // This code is contributed by PrinciRaj1992< script > /* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ // Utility function to calculate sum of all // vector elements function findSum ( arr ) { let sum = 0 ; for ( let i = 0 ; i < arr . length ; i ++ ) sum += arr [ i ]; return sum ; } // Function to construct Maximum Sum Increasing // Subsequence function printMaxSumIs ( arr n ) { // L[i] - The Maximum Sum Increasing // Subsequence that ends with arr[i] let L = new Array ( n ); for ( let i = 0 ; i < n ; i ++ ) L [ i ] = []; // L[0] is equal to arr[0] L [ 0 ]. push ( arr [ 0 ]); // start from index 1 for ( let i = 1 ; i < n ; i ++ ) { // for every j less than i for ( let j = 0 ; j < i ; j ++ ) { /* * L[i] = {MaxSum(L[j])} + arr[i] where j < i and arr[j] < arr[i] */ if (( arr [ i ] > arr [ j ]) && ( findSum ( L [ i ]) < findSum ( L [ j ]))) { for ( let k = 0 ; k < L [ j ]. length ; k ++ ) if ( ! L [ i ]. includes ( L [ j ][ k ])) L [ i ]. push ( L [ j ][ k ]); } } // L[i] ends with arr[i] L [ i ]. push ( arr [ i ]); // L[i] now stores Maximum Sum Increasing // Subsequence of arr[0..i] that ends with // arr[i] } let res = L [ 0 ]; // res = L[0]; // find max for ( let x = 0 ; x < L . length ; x ++ ) if ( findSum ( L [ x ]) > findSum ( res )) res = L [ x ]; // max will contain result for ( let i = 0 ; i < res . length ; i ++ ) document . write ( res [ i ] + ' ' ); document . write ( '
' ); } // Driver Code let arr = [ 3 2 6 4 5 1 ]; let n = arr . length ; // construct and print Max Sum IS of arr printMaxSumIs ( arr n ); // This code is contributed by unknown2108 < /script>
Ausgabe3 4 5
Wir können die obige DP-Lösung optimieren, indem wir die Funktion findSum() entfernen. Stattdessen können wir einen anderen Vektor/ein anderes Array verwalten, um die Summe der maximal summenerhöhenden Teilsequenz zu speichern, die mit arr[i] endet.Zeitkomplexität Die obige dynamische Programmierlösung ist O(n 2 ).
Hilfsraum vom Programm verwendet wird, ist O(n 2 ).Ansatz 2: ( Benutzen Dynamische Programmierung mit O(N)-Raum
Der obige Ansatz befasste sich mit der Konstruktion einer Teilfolge mit maximaler Summenerhöhung in O(N). 2 ) Zeit und O(N 2 ) Raum. In diesem Ansatz optimieren wir die Raumkomplexität und konstruieren die maximal summenerhöhende Teilfolge in O(N). 2 ) Zeit und O(N)-Raum.
- Sei arr[0..n-1] das Eingabearray.
- Wir definieren einen Vektor von Paaren L, sodass L[i] zunächst die maximal summenerhöhende Teilfolge von arr[0..i] speichert, die mit arr[i] endet, und L[i].zweitens den Index des vorherigen Elements speichert, das zum Generieren der Summe verwendet wurde.
- Da das erste Element kein vorheriges Element hat, wäre sein Index in L[0] -1.
Zum Beispiel
array = [3 2 6 4 5 1]
L[0]: {3 -1}
L[1]: {2 1}
L[2]: {9 0}
L[3]: {7 0}
L[4]: {12 3}
L[5]: {1 5}Wie wir oben sehen können, beträgt der Wert der maximal summenerhöhenden Teilsequenz 12. Um die eigentliche Teilsequenz zu erstellen, verwenden wir den in L[i].second gespeicherten Index. Die Schritte zum Erstellen der Teilsequenz sind unten dargestellt:
- Speichern Sie in einem Vektorergebnis den Wert des Elements, in dem die maximal summenansteigende Teilsequenz gefunden wurde (d. h. bei currIndex = 4). Im Ergebnisvektor fügen wir also arr[currIndex] hinzu.
- Aktualisieren Sie den currIndex auf L[currIndex].second und wiederholen Sie Schritt 1, bis currIndex nicht mehr -1 ist oder sich nicht ändert (d. h. currIndex == previousIndex).
- Zeigen Sie die Elemente des Ergebnisvektors in umgekehrter Reihenfolge an.
Nachfolgend finden Sie die Umsetzung der obigen Idee:
C++14 /* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ #include using namespace std ; // Function to construct and print the Maximum Sum // Increasing Subsequence void constructMaxSumIS ( vector < int > arr int n ) { // L[i] stores the value of Maximum Sum Increasing // Subsequence that ends with arr[i] and the index of // previous element used to construct the Subsequence vector < pair < int int > > L ( n ); int index = 0 ; for ( int i : arr ) { L [ index ] = { i index }; index ++ ; } // Set L[0].second equal to -1 L [ 0 ]. second = -1 ; // start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // for every j less than i for ( int j = 0 ; j < i ; j ++ ) { if ( arr [ i ] > arr [ j ] and L [ i ]. first < arr [ i ] + L [ j ]. first ) { L [ i ]. first = arr [ i ] + L [ j ]. first ; L [ i ]. second = j ; } } } int maxi = INT_MIN currIndex track = 0 ; for ( auto p : L ) { if ( p . first > maxi ) { maxi = p . first ; currIndex = track ; } track ++ ; } // Stores the final Subsequence vector < int > result ; // Index of previous element // used to construct the Subsequence int prevoiusIndex ; while ( currIndex >= 0 ) { result . push_back ( arr [ currIndex ]); prevoiusIndex = L [ currIndex ]. second ; if ( currIndex == prevoiusIndex ) break ; currIndex = prevoiusIndex ; } for ( int i = result . size () - 1 ; i >= 0 ; i -- ) cout < < result [ i ] < < ' ' ; } // Driver Code int main () { vector < int > arr = { 1 101 2 3 100 4 5 }; int n = arr . size (); // Function call constructMaxSumIS ( arr n ); return 0 ; }
Java // Dynamic Programming solution to construct // Maximum Sum Increasing Subsequence import java.util.* ; import java.awt.Point ; class GFG { // Function to construct and print the Maximum Sum // Increasing Subsequence static void constructMaxSumIS ( List < Integer > arr int n ) { // L.get(i) stores the value of Maximum Sum Increasing // Subsequence that ends with arr.get(i) and the index of // previous element used to construct the Subsequence List < Point > L = new ArrayList < Point > (); int index = 0 ; for ( int i : arr ) { L . add ( new Point ( i index )); index ++ ; } // Set L[0].second equal to -1 L . set ( 0 new Point ( L . get ( 0 ). x - 1 )); // Start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // For every j less than i for ( int j = 0 ; j < i ; j ++ ) { if ( arr . get ( i ) > arr . get ( j ) && L . get ( i ). x < arr . get ( i ) + L . get ( j ). x ) { L . set ( i new Point ( arr . get ( i ) + L . get ( j ). x j )); } } } int maxi = - 100000000 currIndex = 0 track = 0 ; for ( Point p : L ) { if ( p . x > maxi ) { maxi = p . x ; currIndex = track ; } track ++ ; } // Stores the final Subsequence List < Integer > result = new ArrayList < Integer > (); // Index of previous element // used to construct the Subsequence int prevoiusIndex ; while ( currIndex >= 0 ) { result . add ( arr . get ( currIndex )); prevoiusIndex = L . get ( currIndex ). y ; if ( currIndex == prevoiusIndex ) break ; currIndex = prevoiusIndex ; } for ( int i = result . size () - 1 ; i >= 0 ; i -- ) System . out . print ( result . get ( i ) + ' ' ); } // Driver Code public static void main ( String [] s ) { List < Integer > arr = new ArrayList < Integer > (); arr . add ( 1 ); arr . add ( 101 ); arr . add ( 2 ); arr . add ( 3 ); arr . add ( 100 ); arr . add ( 4 ); arr . add ( 5 ); int n = arr . size (); // Function call constructMaxSumIS ( arr n ); } } // This code is contributed by rutvik_56
Python # Dynamic Programming solution to construct # Maximum Sum Increasing Subsequence import sys # Function to construct and print the Maximum Sum # Increasing Subsequence def constructMaxSumIS ( arr n ) : # L[i] stores the value of Maximum Sum Increasing # Subsequence that ends with arr[i] and the index of # previous element used to construct the Subsequence L = [] index = 0 for i in arr : L . append ([ i index ]) index += 1 # Set L[0].second equal to -1 L [ 0 ][ 1 ] = - 1 # start from index 1 for i in range ( 1 n ) : # for every j less than i for j in range ( i ) : if ( arr [ i ] > arr [ j ] and L [ i ][ 0 ] < arr [ i ] + L [ j ][ 0 ]) : L [ i ][ 0 ] = arr [ i ] + L [ j ][ 0 ] L [ i ][ 1 ] = j maxi currIndex track = - sys . maxsize 0 0 for p in L : if ( p [ 0 ] > maxi ) : maxi = p [ 0 ] currIndex = track track += 1 # Stores the final Subsequence result = [] while ( currIndex >= 0 ) : result . append ( arr [ currIndex ]) prevoiusIndex = L [ currIndex ][ 1 ] if ( currIndex == prevoiusIndex ) : break currIndex = prevoiusIndex for i in range ( len ( result ) - 1 - 1 - 1 ) : print ( result [ i ] end = ' ' ) arr = [ 1 101 2 3 100 4 5 ] n = len ( arr ) # Function call constructMaxSumIS ( arr n ) # This code is contributed by divyeshrabadiya07
C# /* Dynamic Programming solution to construct Maximum Sum Increasing Subsequence */ using System ; using System.Collections.Generic ; class GFG { // Function to construct and print the Maximum Sum // Increasing Subsequence static void constructMaxSumIS ( List < int > arr int n ) { // L[i] stores the value of Maximum Sum Increasing // Subsequence that ends with arr[i] and the index of // previous element used to construct the Subsequence List < Tuple < int int >> L = new List < Tuple < int int >> (); int index = 0 ; foreach ( int i in arr ) { L . Add ( new Tuple < int int > ( i index )); index ++ ; } // Set L[0].second equal to -1 L [ 0 ] = new Tuple < int int > ( L [ 0 ]. Item1 - 1 ); // start from index 1 for ( int i = 1 ; i < n ; i ++ ) { // for every j less than i for ( int j = 0 ; j < i ; j ++ ) { if ( arr [ i ] > arr [ j ] && L [ i ]. Item1 < arr [ i ] + L [ j ]. Item1 ) { L [ i ] = new Tuple < int int > ( arr [ i ] + L [ j ]. Item1 j ); } } } int maxi = Int32 . MinValue currIndex = 0 track = 0 ; foreach ( Tuple < int int > p in L ) { if ( p . Item1 > maxi ) { maxi = p . Item1 ; currIndex = track ; } track ++ ; } // Stores the final Subsequence List < int > result = new List < int > (); // Index of previous element // used to construct the Subsequence int prevoiusIndex ; while ( currIndex >= 0 ) { result . Add ( arr [ currIndex ]); prevoiusIndex = L [ currIndex ]. Item2 ; if ( currIndex == prevoiusIndex ) break ; currIndex = prevoiusIndex ; } for ( int i = result . Count - 1 ; i >= 0 ; i -- ) Console . Write ( result [ i ] + ' ' ); } static void Main () { List < int > arr = new List < int > ( new int [] { 1 101 2 3 100 4 5 }); int n = arr . Count ; // Function call constructMaxSumIS ( arr n ); } } // This code is contributed by divyesh072019
JavaScript < script > // Dynamic Programming solution to construct // Maximum Sum Increasing Subsequence // Function to construct and print the Maximum Sum // Increasing Subsequence function constructMaxSumIS ( arr n ){ // L[i] stores the value of Maximum Sum Increasing // Subsequence that ends with arr[i] and the index of // previous element used to construct the Subsequence let L = [] let index = 0 for ( let i of arr ){ L . push ([ i index ]) index += 1 } // Set L[0].second equal to -1 L [ 0 ][ 1 ] = - 1 // start from index 1 for ( let i = 1 ; i < n ; i ++ ){ // for every j less than i for ( let j = 0 ; j < i ; j ++ ){ if ( arr [ i ] > arr [ j ] && L [ i ][ 0 ] < arr [ i ] + L [ j ][ 0 ]){ L [ i ][ 0 ] = arr [ i ] + L [ j ][ 0 ] L [ i ][ 1 ] = j } } } let maxi = Number . MIN_VALUE currIndex = 0 track = 0 for ( let p of L ){ if ( p [ 0 ] > maxi ){ maxi = p [ 0 ] currIndex = track } track += 1 } // Stores the final Subsequence let result = [] while ( currIndex >= 0 ){ result . push ( arr [ currIndex ]) let prevoiusIndex = L [ currIndex ][ 1 ] if ( currIndex == prevoiusIndex ) break currIndex = prevoiusIndex } for ( let i = result . length - 1 ; i >= 0 ; i -- ) document . write ( result [ i ] ' ' ) } let arr = [ 1 101 2 3 100 4 5 ] let n = arr . length // Function call constructMaxSumIS ( arr n ) // This code is contributed by shinjanpatra < /script>
Ausgabe
1 2 3 100
Zeitkomplexität: AN 2 )
Raumkomplexität: AN)