Petersons Algorithmus für gegenseitigen Ausschluss | Set 2 (CPU-Zyklen und Speicherbegrenzung)

Petersons Algorithmus für gegenseitigen Ausschluss | Set 2 (CPU-Zyklen und Speicherbegrenzung)

Problem: Bei 2 Prozessen i und j müssen Sie ein Programm schreiben, das den gegenseitigen Ausschluss zwischen den beiden ohne zusätzliche Hardwareunterstützung gewährleisten kann.

Verschwendung von CPU-Taktzyklen

Laienhaft ausgedrückt endete ein Thread, der darauf wartete, an die Reihe zu kommen, in einer langen While-Schleife, die die Bedingung millionenfach pro Sekunde testete und so unnötige Berechnungen durchführte. Es gibt eine bessere Art zu warten und sie heißt 'Ertrag' .

Um zu verstehen, was es tut, müssen wir uns eingehend mit der Funktionsweise des Prozessplaners unter Linux befassen. Die hier erwähnte Idee ist eine vereinfachte Version des Schedulers, die tatsächliche Implementierung weist viele Komplikationen auf.

Betrachten Sie das folgende Beispiel 
Es gibt drei Prozesse P1, P2 und P3. Der Prozess P3 verfügt über eine While-Schleife, die der in unserem Code ähnelt und nicht so nützliche Berechnungen durchführt, und er existiert nur dann aus der Schleife, wenn P2 seine Ausführung beendet hat. Der Scheduler stellt sie alle in eine Round-Robin-Warteschlange. Angenommen, die Taktrate des Prozessors beträgt 1.000.000/s und er weist jedem Prozess in jeder Iteration 100 Takte zu. Dann wird zuerst P1 für 100 Takte (0,0001 Sekunden) ausgeführt, dann P2 (0,0001 Sekunden), gefolgt von P3 (0,0001 Sekunden). Da es keine weiteren Prozesse mehr gibt, wiederholt sich dieser Zyklus, bis P2 endet, gefolgt von der Ausführung von P3 und schließlich seiner Beendigung.

Dies ist eine völlige Verschwendung der 100 CPU-Taktzyklen. Um dies zu vermeiden, geben wir gegenseitig die CPU-Zeitscheibe auf, d. h. Yield, wodurch diese Zeitscheibe im Wesentlichen endet und der Scheduler den nächsten auszuführenden Prozess aufnimmt. Jetzt testen wir einmal unseren Zustand und geben dann die CPU ab. Wenn man bedenkt, dass unser Test 25 Taktzyklen dauert, sparen wir 75 % unserer Berechnungen in einem Zeitabschnitt. Um es grafisch auszudrücken
 

Petersons Algorithmus für gegenseitigen Ausschluss | Set 2 (CPU-Zyklen und Speicherbegrenzung)

Wenn man bedenkt, dass die Prozessortaktrate 1 MHz beträgt, ist das eine Menge Ersparnis! 
Verschiedene Distributionen bieten unterschiedliche Funktionen, um diese Funktionalität zu erreichen. Linux bietet sched_yield() .

C
   void     lock  (  int     self  )   {      flag  [  self  ]     =     1  ;      turn     =     1  -  self  ;      while     (  flag  [  1  -  self  ]     ==     1     &&      turn     ==     1  -  self  )          // Only change is the addition of      // sched_yield() call      sched_yield  ();   }   

Erinnerungszaun.

Der Code im früheren Tutorial hat möglicherweise auf den meisten Systemen funktioniert, war jedoch nicht 100 % korrekt. Die Logik war perfekt, aber die meisten modernen CPUs verwenden Leistungsoptimierungen, die zu einer Ausführung außerhalb der Reihenfolge führen können. Diese Neuordnung von Speicheroperationen (Laden und Speichern) bleibt innerhalb eines einzelnen Ausführungsthreads normalerweise unbemerkt, kann jedoch zu unvorhersehbarem Verhalten in gleichzeitigen Programmen führen.
Betrachten Sie dieses Beispiel 

C
      while     (  f     ==     0  );          // Memory fence required here      print     x  ;   

Im obigen Beispiel betrachtet der Compiler die beiden Anweisungen als unabhängig voneinander und versucht daher, die Codeeffizienz zu erhöhen, indem er sie neu anordnet, was bei gleichzeitigen Programmen zu Problemen führen kann. Um dies zu vermeiden, platzieren wir einen Speicherzaun, um dem Compiler einen Hinweis auf die mögliche Beziehung zwischen den Anweisungen über die Barriere hinweg zu geben.

Also die Reihenfolge der Aussagen  

flag[self] = 1; 
turn = 1-selbst; 
while (Prüfung der Turn-Bedingung) 
Ertrag(); 
 

muss genau gleich sein, damit die Sperre funktioniert, andernfalls kommt es zu einem Deadlock-Zustand.

Um dies sicherzustellen, stellen Compiler eine Anweisung bereit, die die Reihenfolge von Anweisungen über diese Barriere hinweg verhindert. Im Falle von gcc ist es __sync_synchronize() .
So wird der geänderte Code 
Vollständige Implementierung in C:

C++
   // Filename: peterson_yieldlock_memoryfence.cpp   // Use below command to compile:   // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence   #include       #include      #include       std  ::  atomic   <  int  >     flag  [  2  ];   std  ::  atomic   <  int  >     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      std  ::  atomic_thread_fence  (  std  ::  memory_order_seq_cst  );      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      std  ::  this_thread  ::  yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void     func  (  int     s  )   {      int     i     =     0  ;      int     self     =     s  ;      std  ::  cout      < <     'Thread Entered: '      < <     self      < <     std  ::  endl  ;      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         // Initialize the lock       lock_init  ();      // Create two threads (both run func)      std  ::  thread     t1  (  func       0  );      std  ::  thread     t2  (  func       1  );      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      std  ::  cout      < <     'Actual Count: '      < <     ans      < <     ' | Expected Count: '      < <     MAX  *  2      < <     std  ::  endl  ;      return     0  ;   }   
C
   // Filename: peterson_yieldlock_memoryfence.c   // Use below command to compile:   // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence   #include      #include      #include     'mythreads.h'   int     flag  [  2  ];   int     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      __sync_synchronize  ();      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      sched_yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void  *     func  (  void     *  s  )   {      int     i     =     0  ;      int     self     =     (  int     *  )  s  ;      printf  (  'Thread Entered: %d  n  '    self  );      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         pthread_t     p1       p2  ;      // Initialize the lock       lock_init  ();      // Create two threads (both run func)      Pthread_create  (  &  p1       NULL       func       (  void  *  )  0  );      Pthread_create  (  &  p2       NULL       func       (  void  *  )  1  );      // Wait for the threads to end.      Pthread_join  (  p1       NULL  );      Pthread_join  (  p2       NULL  );      printf  (  'Actual Count: %d | Expected Count:'      ' %d  n  '    ans    MAX  *  2  );      return     0  ;   }   
Java
   import     java.util.concurrent.atomic.AtomicInteger  ;   public     class   PetersonYieldLockMemoryFence     {      static     AtomicInteger  []     flag     =     new     AtomicInteger  [  2  ]  ;      static     AtomicInteger     turn     =     new     AtomicInteger  ();      static     final     int     MAX     =     1000000000  ;      static     int     ans     =     0  ;      static     void     lockInit  ()     {      flag  [  0  ]     =     new     AtomicInteger  ();      flag  [  1  ]     =     new     AtomicInteger  ();      flag  [  0  ]  .  set  (  0  );      flag  [  1  ]  .  set  (  0  );      turn  .  set  (  0  );      }      static     void     lock  (  int     self  )     {      flag  [  self  ]  .  set  (  1  );      turn  .  set  (  1     -     self  );      // Memory fence to prevent the reordering of instructions beyond this barrier.      // In Java volatile variables provide this guarantee implicitly.      // No direct equivalent to atomic_thread_fence is needed.      while     (  flag  [  1     -     self  ]  .  get  ()     ==     1     &&     turn  .  get  ()     ==     1     -     self  )      Thread  .  yield  ();      }      static     void     unlock  (  int     self  )     {      flag  [  self  ]  .  set  (  0  );      }      static     void     func  (  int     s  )     {      int     i     =     0  ;      int     self     =     s  ;      System  .  out  .  println  (  'Thread Entered: '     +     self  );      lock  (  self  );      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );      }      public     static     void     main  (  String  []     args  )     {      // Initialize the lock      lockInit  ();      // Create two threads (both run func)      Thread     t1     =     new     Thread  (()     ->     func  (  0  ));      Thread     t2     =     new     Thread  (()     ->     func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      try     {      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      }     catch     (  InterruptedException     e  )     {      e  .  printStackTrace  ();      }      System  .  out  .  println  (  'Actual Count: '     +     ans     +     ' | Expected Count: '     +     MAX     *     2  );      }   }   
Python
   import   threading   flag   =   [  0     0  ]   turn   =   0   MAX   =   10  **  9   ans   =   0   def   lock_init  ():   # This function initializes the lock by resetting the flags and turn.   global   flag     turn   flag   =   [  0     0  ]   turn   =   0   def   lock  (  self  ):   # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread.   global   flag     turn   flag  [  self  ]   =   1   turn   =   1   -   self   while   flag  [  1  -  self  ]   ==   1   and   turn   ==   1  -  self  :   pass   def   unlock  (  self  ):   # This function is executed after leaving the critical section. It resets the flag for the current thread.   global   flag   flag  [  self  ]   =   0   def   func  (  s  ):   # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section.   global   ans   self   =   s   print  (  f  'Thread Entered:   {  self  }  '  )   lock  (  self  )   for   _   in   range  (  MAX  ):   ans   +=   1   unlock  (  self  )   def   main  ():   # This is the main function where the threads are created and started.   lock_init  ()   t1   =   threading  .  Thread  (  target  =  func     args  =  (  0  ))   t2   =   threading  .  Thread  (  target  =  func     args  =  (  1  ))   t1  .  start  ()   t2  .  start  ()   t1  .  join  ()   t2  .  join  ()   print  (  f  'Actual Count:   {  ans  }   | Expected Count:   {  MAX  *  2  }  '  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   class     PetersonYieldLockMemoryFence     {      static     flag     =     [  0       0  ];      static     turn     =     0  ;      static     MAX     =     1000000000  ;      static     ans     =     0  ;      // Function to acquire the lock      static     async     lock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     1  ;      PetersonYieldLockMemoryFence  .  turn     =     1     -     self  ;      // Asynchronous loop with a small delay to yield      while     (  PetersonYieldLockMemoryFence  .  flag  [  1     -     self  ]     ==     1     &&      PetersonYieldLockMemoryFence  .  turn     ==     1     -     self  )     {      await     new     Promise  (  resolve     =>     setTimeout  (  resolve       0  ));      }      }      // Function to release the lock      static     unlock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     0  ;      }      // Function representing the critical section      static     func  (  s  )     {      let     i     =     0  ;      let     self     =     s  ;      console  .  log  (  'Thread Entered: '     +     self  );          // Lock the critical section      PetersonYieldLockMemoryFence  .  lock  (  self  ).  then  (()     =>     {      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     PetersonYieldLockMemoryFence  .  MAX  ;     i  ++  )     {      PetersonYieldLockMemoryFence  .  ans  ++  ;      }          // Release the lock      PetersonYieldLockMemoryFence  .  unlock  (  self  );      });      }      // Main function      static     main  ()     {      // Create two threads (both run func)      const     t1     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  0  ));      const     t2     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      // Wait for the threads to end.      setTimeout  (()     =>     {      console  .  log  (  'Actual Count: '     +     PetersonYieldLockMemoryFence  .  ans     +     ' | Expected Count: '     +     PetersonYieldLockMemoryFence  .  MAX     *     2  );      }     1000  );     // Delay for a while to ensure threads finish      }   }   // Define a simple Thread class for simulation   class     Thread     {      constructor  (  func  )     {      this  .  func     =     func  ;      }      start  ()     {      this  .  func  ();      }   }   // Run the main function   PetersonYieldLockMemoryFence  .  main  ();   
C++
   // mythread.h (A wrapper header file with assert statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include         #include         // Function to lock a pthread mutex   void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was locked successfully   }       // Function to unlock a pthread mutex   void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was unlocked successfully   }       // Function to create a pthread   void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );     // Assert that the thread was created successfully   }   // Function to join a pthread   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );     // Assert that the thread was joined successfully   }   #endif   // __MYTHREADS_h__   
C
   // mythread.h (A wrapper header file with assert   // statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include          #include         void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );   }   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );   }   #endif   // __MYTHREADS_h__   
Python
   import   threading   import   ctypes   # Function to lock a thread lock   def   Thread_lock  (  lock  ):   lock  .  acquire  ()   # Acquire the lock   # No need for assert in Python acquire will raise an exception if it fails   # Function to unlock a thread lock   def   Thread_unlock  (  lock  ):   lock  .  release  ()   # Release the lock   # No need for assert in Python release will raise an exception if it fails   # Function to create a thread   def   Thread_create  (  target     args  =  ()):   thread   =   threading  .  Thread  (  target  =  target     args  =  args  )   thread  .  start  ()   # Start the thread   # No need for assert in Python thread.start() will raise an exception if it fails   # Function to join a thread   def   Thread_join  (  thread  ):   thread  .  join  ()   # Wait for the thread to finish   # No need for assert in Python thread.join() will raise an exception if it fails   

Ausgabe: 

 Thread Entered: 1   
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000