Maximale Fläche eines Dreiecks mit unterschiedlichen Scheitelpunktfarben

Maximale Fläche eines Dreiecks mit unterschiedlichen Scheitelpunktfarben

Gegeben sei eine Matrix von N Reihen und M Die Spalten bestehen aus drei Werten {r g b}. Die Aufgabe besteht darin, die Fläche des größten Dreiecks zu ermitteln, dessen eine Seite parallel zur y-Achse, d. h. vertikal, verläuft und dessen Farbe an allen drei Eckpunkten unterschiedlich ist.
Beispiele:  
 

    Input :      N = 4 M =5   
mat[][] =
{
r r r r r
r r r r g
r r r r r
b b b b b
}
Output : 10
The maximum area of triangle is 10.
Triangle coordinates are (00) containing r (14) containing g (30) containing b.

Maximale Fläche eines Dreiecks mit unterschiedlichen Scheitelpunktfarben

    

Wir wissen, dass die Fläche eines Dreiecks = 1/2 * Basis * Höhe ist, daher müssen wir die Basis und Höhe des Dreiecks maximieren. Da eine Seite parallel zur y-Achse ist, können wir diese Seite als Basis des Dreiecks betrachten.
Um die Basis zu maximieren, können wir das erste und letzte Vorkommen von {r g b} für jede Spalte ermitteln. Wir haben also zwei Sätze mit jeweils drei Werten für jede Spalte. Für die Basis in jeder Spalte stammt ein Scheitelpunkt aus der ersten Menge und der zweite Scheitelpunkt aus der zweiten Menge, sodass sie unterschiedliche Werte haben.
Um die Höhe einer beliebigen Säule als Basis zu maximieren, muss der dritte Scheitelpunkt so gewählt werden, dass der Scheitelpunkt am weitesten von der Säule entfernt auf der linken oder rechten Seite der Säule liegt und einen anderen Wert als die anderen beiden Scheitelpunkte aufweist. 
Ermitteln Sie nun für jede Spalte die maximale Fläche des Dreiecks.
Nachfolgend finden Sie die Umsetzung dieses Ansatzes:
 

C++
   // C++ program to find maximum area of triangle   // having different vertex color in a matrix.   #include       using     namespace     std  ;   #define R 4   #define C 5   // return the color value so that their corresponding   // index can be access.   int     mapcolor  (  char     c  )   {      if     (  c     ==     'r'  )      return     0  ;      else     if     (  c     ==     'g'  )      return     1  ;      else     if     (  c     ==     'b'  )      return     2  ;   }   // Returns the maximum area of triangle from all   // the possible triangles   double     findarea  (  char     mat  [  R  ][  C  ]     int     r       int     c        int     top  [  3  ][  C  ]     int     bottom  [  3  ][  C  ]      int     left  [  3  ]     int     right  [  3  ])   {      double     ans     =     (  double  )  1  ;      // for each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )      // for each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )      // for each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )      {      // finding the third color of      // vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     INT_MAX     &&      bottom  [  y  ][  i  ]     !=     INT_MIN     &&     left  [  z  ]     !=     INT_MAX  )      {      ans     =     max  (  ans       ((  double  )  1  /  (  double  )  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *      (  i     -     left  [  z  ]));      }      // finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     INT_MAX     &&      bottom  [  y  ][  i  ]     !=     INT_MIN     &&      right  [  z  ]     !=     INT_MIN  )      {      ans     =     max  (  ans       ((  double  )  1  /  (  double  )  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *      (  right  [  z  ]     -     i  ));      }      }      return     ans  ;   }   // Precompute the vertices of top bottom left   // and right and then computing the maximum area.   double     maxarea  (  char     mat  [  R  ][  C  ]     int     r       int     c  )   {      int     left  [  3  ]     right  [  3  ];      int     top  [  3  ][  C  ]     bottom  [  3  ][  C  ];      memset  (  left       INT_MAX       sizeof     left  );      memset  (  right       INT_MIN       sizeof     right  );      memset  (  top       INT_MAX       sizeof     top  );      memset  (  bottom       INT_MIN       sizeof     bottom  );      // finding the r b g cells for the left      // and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )      {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )      {      left  [  mapcolor  (  mat  [  i  ][  j  ])]     =      min  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]     j  );      right  [  mapcolor  (  mat  [  i  ][  j  ])]     =      max  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]     j  );      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )      {      for  (     int     i     =     0  ;     i      <     r  ;     i  ++  )      {      top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     =      min  (  top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     i  );      bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     =      max  (  bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]     i  );      }      }      return     findarea  (  mat       R       C       top       bottom       left       right  );   }   // Driven Program   int     main  ()   {      char     mat  [  R  ][  C  ]     =      {      'r'       'r'       'r'       'r'       'r'        'r'       'r'       'r'       'r'       'g'        'r'       'r'       'r'       'r'       'r'        'b'       'b'       'b'       'b'       'b'        };      cout      < <     maxarea  (  mat       R       C  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   Main     {      static     int     R     =     4  ;      static     int     C     =     5  ;      static     char  [][]     mat     =     {      {  'r'       'r'       'r'       'r'       'r'  }      {  'r'       'r'       'r'       'r'       'g'  }      {  'r'       'r'       'r'       'r'       'r'  }      {  'b'       'b'       'b'       'b'       'b'  }      };      public     static     void     main  (  String  []     args  )     {      System  .  out  .  println  (  maxArea  (  mat       R       C  ));      }      // Returns the color value so that their corresponding index can be accessed.      static     int     mapColor  (  char     c  )     {      if     (  c     ==     'r'  )     return     0  ;      else     if     (  c     ==     'g'  )     return     1  ;      else     if     (  c     ==     'b'  )     return     2  ;      else     return     -  1  ;      }      // Returns the maximum area of triangle from all the possible triangles      static     double     findArea  (  char  [][]     mat       int     r       int     c       int  [][]     top       int  [][]     bottom       int  []     left       int  []     right  )     {      double     ans     =     10  ;      // For each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )     {      // For each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )     {      // For each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )     {      // Finding the third color of vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // Finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Integer  .  MAX_VALUE     &&      bottom  [  y  ][  i  ]     !=     Integer  .  MIN_VALUE     &&      left  [  z  ]     !=     Integer  .  MAX_VALUE  )     {      ans     =     Math  .  max  (  ans       0.5     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ]  )     *     (  i     -     left  [  z  ]  ));      }      // Finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Integer  .  MAX_VALUE     &&      bottom  [  y  ][  i  ]     !=     Integer  .  MIN_VALUE     &&      right  [  z  ]     !=     Integer  .  MIN_VALUE  )     {      ans     =     Math  .  max  (  ans       0.5     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ]  )     *     (  right  [  z  ]     -     i  ));      }      }      }      }      return     ans  ;      }      // Precompute the vertices of top bottom left and right and then computing the maximum area.      static     double     maxArea  (  char  [][]     mat       int     r       int     c  )     {      int  []     left     =     new     int  [  3  ]  ;      Arrays  .  fill  (  left       Integer  .  MAX_VALUE  );      int  []     right     =     new     int  [  3  ]  ;      Arrays  .  fill  (  right       Integer  .  MIN_VALUE  );      int  [][]     top     =     new     int  [  3  ][  c  ]  ;      for     (  int  []     row     :     top  )     Arrays  .  fill  (  row       Integer  .  MAX_VALUE  );      int  [][]     bottom     =     new     int  [  3  ][  c  ]  ;      for     (  int  []     row     :     bottom  )     Arrays  .  fill  (  row       Integer  .  MIN_VALUE  );      // Finding the r b g cells for the left and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      int     color     =     mapColor  (  mat  [  i  ][  j  ]  );      left  [  color  ]     =     Math  .  min  (  left  [  color  ]       j  );      right  [  color  ]     =     Math  .  max  (  right  [  color  ]       j  );      }      }      // Finding set of {r g b} of top and bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      int     color     =     mapColor  (  mat  [  i  ][  j  ]  );      top  [  color  ][  j  ]     =     Math  .  min  (  top  [  color  ][  j  ]       i  );      bottom  [  color  ][  j  ]     =     Math  .  max  (  bottom  [  color  ][  j  ]       i  );      }      }      return     findArea  (  mat       r       c       top       bottom       left       right  );      }   }   
Python3
   # Python3 program to find the maximum    # area of triangle having different    # vertex color in a matrix.    # Return the color value so that their    # corresponding index can be access.    def   mapcolor  (  c  ):   if   c   ==   'r'  :   return   0   elif   c   ==   'g'  :   return   1   elif   c   ==   'b'  :   return   2   # Returns the maximum area of triangle    # from all the possible triangles    def   findarea  (  mat     r     c     top     bottom     left     right  ):   ans   =   1   # for each column    for   i   in   range  (  0     c  ):   # for each top vertex    for   x   in   range  (  0     3  ):   # for each bottom vertex    for   y   in   range  (  0     3  ):   # finding the third color of    # vertex either on right or left.    z   =   3   -   x   -   y   # finding area of triangle on    # left side of column.    if   (  x   !=   y   and   top  [  x  ][  i  ]   !=   INT_MAX   and   bottom  [  y  ][  i  ]   !=   INT_MIN   and   left  [  z  ]   !=   INT_MAX  ):   ans   =   max  (  ans     0.5   *   (  bottom  [  y  ][  i  ]   -   top  [  x  ][  i  ])   *   (  i   -   left  [  z  ]))   # finding area of triangle on right side of column.    if   (  x   !=   y   and   top  [  x  ][  i  ]   !=   INT_MAX   and   bottom  [  y  ][  i  ]   !=   INT_MIN   and   right  [  z  ]   !=   INT_MIN  ):   ans   =   max  (  ans     0.5   *   (  bottom  [  y  ][  i  ]   -   top  [  x  ][  i  ])   *   (  right  [  z  ]   -   i  ))   return   ans   # Precompute the vertices of top bottom left    # and right and then computing the maximum area.    def   maxarea  (  mat     r     c  ):   left   =   [  -  1  ]   *   3   right   =   [  0  ]   *   3   top   =   [[  -  1   for   i   in   range  (  C  )]   for   j   in   range  (  3  )]   bottom   =   [[  0   for   i   in   range  (  C  )]   for   j   in   range  (  3  )]   # finding the r b g cells for    # the left and right vertices.    for   i   in   range  (  0     r  ):   for   j   in   range  (  0     c  ):   left  [  mapcolor  (  mat  [  i  ][  j  ])]   =    min  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]   j  )   right  [  mapcolor  (  mat  [  i  ][  j  ])]   =    max  (  left  [  mapcolor  (  mat  [  i  ][  j  ])]   j  )   # finding set of r g b of top    # and bottom for each column.    for   j   in   range  (  0     c  ):   for   i   in   range  (  0     r  ):   top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   =    min  (  top  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   i  )   bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   =    max  (  bottom  [  mapcolor  (  mat  [  i  ][  j  ])][  j  ]   i  )   return   int  (  findarea  (  mat     R     C     top     bottom     left     right  ))   # Driver Code   if   __name__   ==   '__main__'  :   R     C   =   4     5   mat   =   [[  'r'     'r'     'r'     'r'     'r'  ]   [  'r'     'r'     'r'     'r'     'g'  ]   [  'r'     'r'     'r'     'r'     'r'  ]   [  'b'     'b'     'b'     'b'     'b'  ]]   INT_MAX     INT_MIN   =   float  (  'inf'  )   float  (  '-inf'  )   print  (  maxarea  (  mat     R     C  ))   # This code is contributed by Rituraj Jain   
C#
   // C# program to find maximum area of triangle   // having different vertex color in a matrix.   using     System  ;   class     MainClass     {      const     int     R     =     4  ;      const     int     C     =     5  ;      // return the color value so that their corresponding      // index can be access.      static     int     mapcolor  (  char     c  )      {      if     (  c     ==     'r'  )     {      return     0  ;      }      else     if     (  c     ==     'g'  )     {      return     1  ;      }      else     if     (  c     ==     'b'  )     {      return     2  ;      }      else     {      return     -  1  ;      }      }      // Returns the maximum area of triangle from all      // the possible triangles      static     double     findarea  (  char  [     ]     mat       int     r       int     c        int  [     ]     top       int  [     ]     bottom        int  []     left       int  []     right  )      {      double     ans     =     .  0  ;      // for each column      for     (  int     i     =     0  ;     i      <     c  ;     i  ++  )     {      // for each top vertex      for     (  int     x     =     0  ;     x      <     3  ;     x  ++  )     {      // for each bottom vertex      for     (  int     y     =     0  ;     y      <     3  ;     y  ++  )     {      // finding the third color of      // vertex either on right or left.      int     z     =     3     -     x     -     y  ;      // finding area of triangle on left side      // of column.      if     (  x     !=     y      &&     top  [  x       i  ]      !=     int  .  MaxValue  &&      bottom  [  y       i  ]      !=     int  .  MinValue  &&     left  [  z  ]      !=     int  .  MaxValue  )     {      ans     =     Math  .  Max  (      ans        (  1.0     /     2.0  )      *     (  bottom  [  y       i  ]     -     top  [  x       i  ])      *     (  i     -     left  [  z  ]));      }      // finding area of triangle on right      // side of column.      if     (  x     !=     y      &&     top  [  x       i  ]      !=     int  .  MaxValue  &&      bottom  [  y       i  ]      !=     int  .  MinValue  &&     right  [  z  ]      !=     int  .  MinValue  )     {      ans     =     Math  .  Max  (      ans        (  1.0     /     2.0  )      *     (  bottom  [  y       i  ]     -     top  [  x       i  ])      *     (  right  [  z  ]     -     i  )  +  4  );      }      }      }      }      return     ans  ;      }      // Precompute the vertices of top bottom left      // and right and then computing the maximum area.      static     double     maxarea  (  char  [     ]     mat       int     r       int     c  )      {      int  []     left      =     {     int  .  MaxValue       int  .  MaxValue       int  .  MaxValue     };      int  []     right      =     {     int  .  MinValue       int  .  MinValue       int  .  MinValue     };      int  [     ]     top     =     new     int  [  3       C  ];      int  [     ]     bottom     =     new     int  [  3       C  ];      // finding the r b g cells for the left      // and right vertices.      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      int     color     =     mapcolor  (  mat  [  i       j  ]);      if     (  color     !=     -  1  )     {      left  [  color  ]     =     Math  .  Min  (  left  [  color  ]     j  );      right  [  color  ]      =     Math  .  Max  (  right  [  color  ]     j  );      }      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      int     color     =     mapcolor  (  mat  [  i       j  ]);      if     (  color     !=     -  1  )     {      top  [  color       j  ]      =     Math  .  Min  (  top  [  color       j  ]     i  );      bottom  [  color       j  ]      =     Math  .  Max  (  bottom  [  color       j  ]     i  );      }      }      }      return     findarea  (  mat       R       C       top       bottom       left        right  );      }      // Driven Program      public     static     void     Main  (  string  []     args  )      {      char  [     ]     mat     =     new     char  [     ]     {      {     'r'       'r'       'r'       'r'       'r'     }      {     'r'       'r'       'r'       'r'       'g'     }      {     'r'       'r'       'r'       'r'       'r'     }      {     'b'       'b'       'b'       'b'       'b'     }      };      Console  .  WriteLine  (  maxarea  (  mat       R       C  ));      }   }   
JavaScript
   // Javascript program to find maximum area of triangle   // having different vertex color in a matrix.   // return the color value so that their corresponding   // index can be accessed.   function     mapcolor  (  c  )     {      if     (  c     ==     'r'  )     return     0  ;      else     if     (  c     ==     'g'  )     return     1  ;      else     if     (  c     ==     'b'  )     return     2  ;   }   // Returns the maximum area of triangle from all   // the possible triangles   function     findarea  (  mat       r       c       top       bottom       left       right  )     {      let     ans     =     10  ;      // for each column      for     (  let     i     =     0  ;     i      <     c  ;     i  ++  )     {      // for each top vertex      for     (  let     x     =     0  ;     x      <     3  ;     x  ++  )     {      // for each bottom vertex      for     (  let     y     =     0  ;     y      <     3  ;     y  ++  )     {      // finding the third color of      // vertex either on right or left.      let     z     =     3     -     x     -     y  ;      // finding area of triangle on left side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Number  .  MAX_SAFE_INTEGER     &&      bottom  [  y  ][  i  ]     !=     Number  .  MIN_SAFE_INTEGER     &&      left  [  z  ]     !=     Number  .  MAX_SAFE_INTEGER  )     {      ans     =     Math  .  max  (  ans       (  1  /  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *     (  i     -     left  [  z  ]));      }      // finding area of triangle on right side of column.      if     (  x     !=     y     &&     top  [  x  ][  i  ]     !=     Number  .  MAX_SAFE_INTEGER     &&      bottom  [  y  ][  i  ]     !=     Number  .  MIN_SAFE_INTEGER     &&      right  [  z  ]     !=     Number  .  MIN_SAFE_INTEGER  )     {      ans     =     Math  .  max  (  ans       (  1  /  2  )     *      (  bottom  [  y  ][  i  ]     -     top  [  x  ][  i  ])     *     (  right  [  z  ]     -     i  ));      }      }      }      }      return     ans  ;   }   // Precompute the vertices of top bottom left   // and right and then computing the maximum area.   function     maxarea  (  mat       r       c  )     {      let     left     =     [  Number  .  MAX_SAFE_INTEGER       Number  .  MAX_SAFE_INTEGER       Number  .  MAX_SAFE_INTEGER  ];      let     right     =     [  Number  .  MIN_SAFE_INTEGER       Number  .  MIN_SAFE_INTEGER       Number  .  MIN_SAFE_INTEGER  ];      let     top     =     Array  .  from  ({  length  :     3  }     ()     =>     Array  (  c  ).  fill  (  Number  .  MAX_SAFE_INTEGER  ));      let     bottom     =     Array  .  from  ({  length  :     3  }     ()     =>     Array  (  c  ).  fill  (  Number  .  MIN_SAFE_INTEGER  ));      // finding the r b g cells for the left      // and right vertices.      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      let     color     =     mapcolor  (  mat  [  i  ][  j  ]);      left  [  color  ]     =     Math  .  min  (  left  [  color  ]     j  );      right  [  color  ]     =     Math  .  max  (  right  [  color  ]     j  );      }      }      // finding set of {r g b} of top and      // bottom for each column.      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      let     color     =     mapcolor  (  mat  [  i  ][  j  ]);      top  [  color  ][  j  ]     =     Math  .  min  (  top  [  color  ][  j  ]     i  );      bottom  [  color  ][  j  ]     =     Math  .  max  (  bottom  [  color  ][  j  ]     i  );      }      }      return     findarea  (  mat       r       c       top       bottom       left       right  );   }   // Driven Program   const     R     =     4  ;   const     C     =     5  ;   const     mat     =     [      [  'r'       'r'       'r'       'r'       'r'  ]      [  'r'       'r'       'r'       'r'       'g'  ]      [  'r'       'r'       'r'       'r'       'r'  ]      [  'b'       'b'       'b'       'b'       'b'  ]   ];   console  .  log  (  maxarea  (  mat       R       C  ));   // akashish__   

Ausgabe:  

 10  


Zeitkomplexität: O(R * C)
Hilfsraum: O(R + C) 
Quelle: https://stackoverflow.com/questions/40078660/maximum-area-of-triangle-having-all-vertices-of-different-color
 

Quiz erstellen