Implementierung der affinen Verschlüsselung

Implementierung der affinen Verschlüsselung

Die affine Chiffre ist eine Art monoalphabetische Substitutions-Chiffre, bei der jeder Buchstabe in einem Alphabet seinem numerischen Äquivalent zugeordnet wird, das mit einer einfachen mathematischen Funktion verschlüsselt und wieder in einen Buchstaben umgewandelt wird. Die verwendete Formel bedeutet, dass jeder Buchstabe in einen anderen Buchstaben und wieder zurück verschlüsselt wird, was bedeutet, dass es sich bei der Chiffre im Wesentlichen um eine Standard-Ersetzungs-Chiffre mit einer Regel handelt, die bestimmt, welcher Buchstabe zu welchem ​​gehört. 
Der gesamte Prozess basiert auf der Arbeit mit Modulo m (der Länge des verwendeten Alphabets). Bei der affinen Chiffre werden die Buchstaben eines Alphabets der Größe m zunächst auf die ganzen Zahlen im Bereich 0 … m-1 abgebildet. 

Der „Schlüssel“ für die affine Chiffre besteht aus zwei Zahlen, die wir a und b nennen. Die folgende Diskussion geht von der Verwendung eines 26-stelligen Alphabets aus (m = 26). a sollte relativ prim zu m gewählt werden (d. h. a sollte keine Faktoren gemeinsam mit m haben). 

affine Verschlüsselungswerte

Verschlüsselung

Es verwendet modulare Arithmetik, um die ganze Zahl, die jedem Klartextbuchstaben entspricht, in eine andere ganze Zahl umzuwandeln, die einem Chiffretextbuchstaben entspricht. Die Verschlüsselungsfunktion für einen einzelnen Buchstaben ist  

 E ( x ) = ( a x + b ) mod m modulus m: size of the alphabet a and b: key of the cipher. a must be chosen such that a and m are coprime. 

Entschlüsselung

Bei der Entschlüsselung des Chiffretexts müssen wir die entgegengesetzten (oder inversen) Funktionen am Chiffretext ausführen, um den Klartext abzurufen. Auch hier besteht der erste Schritt darin, jeden der Chiffretextbuchstaben in seine ganzzahligen Werte umzuwandeln. Die Entschlüsselungsfunktion ist  

D ( x ) = a^-1 ( x - b ) mod m a^-1 : modular multiplicative inverse of a modulo m. i.e. it satisfies the equation 1 = a a^-1 mod m . 

Eine multiplikative Umkehrung finden  

Wir müssen eine Zahl x finden, so dass: 
Wenn wir die Zahl x finden, sodass die Gleichung wahr ist, dann ist x die Umkehrung von a und wir nennen sie a^-1. Der einfachste Weg, diese Gleichung zu lösen, besteht darin, jede der Zahlen 1 bis 25 zu durchsuchen und herauszufinden, welche die Gleichung erfüllt. 

[gxd] = gcd(am); % we can ignore g and d we dont need them x = mod(xm);  

Wenn Sie nun x und a multiplizieren und das Ergebnis reduzieren (Mod 26), erhalten Sie die Antwort 1. Denken Sie daran, dass dies nur die Definition einer Umkehrung ist, d. h. wenn a*x = 1 (Mod 26), dann ist x eine Umkehrung von a (und a ist eine Umkehrung von x).

Beispiel: 

affine Chiffre

Durchführung:

C++
   //CPP program to illustrate Affine Cipher   #include       using     namespace     std  ;   //Key values of a and b   const     int     a     =     17  ;   const     int     b     =     20  ;   string     encryptMessage  (  string     msg  )   {      ///Cipher Text initially empty      string     cipher     =     ''  ;         for     (  int     i     =     0  ;     i      <     msg  .  length  ();     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]  !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +         (  char  )     ((((  a     *     (  msg  [  i  ]  -  'A'  )     )     +     b  )     %     26  )     +     'A'  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   string     decryptCipher  (  string     cipher  )   {      string     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +         (  char  )     (((  a_inv     *     ((  cipher  [  i  ]  +  'A'     -     b  ))     %     26  ))     +     'A'  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   int     main  (  void  )   {      string     msg     =     'AFFINE CIPHER'  ;          //Calling encryption function      string     cipherText     =     encryptMessage  (  msg  );      cout      < <     'Encrypted Message is : '      < <     cipherText   < <  endl  ;          //Calling Decryption function      cout      < <     'Decrypted Message is: '      < <     decryptCipher  (  cipherText  );      return     0  ;   }   
Java
   // Java program to illustrate Affine Cipher   class   GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */         if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ]  ;      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  length  ();     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */         if     (  cipher  .  charAt  (  i  )     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  .  charAt  (  i  )     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  .  charAt  (  i  );      }      }      return     msg  ;      }      // Driver code      public     static     void     main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  toCharArray  ());      System  .  out  .  println  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      System  .  out  .  println  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   // This code contributed by Rajput-Ji   
Python
   # Implementation of Affine Cipher in Python   # Extended Euclidean Algorithm for finding modular inverse   # eg: modinv(7 26) = 15   def   egcd  (  a     b  ):   x    y     u    v   =   0    1     1    0   while   a   !=   0  :   q     r   =   b  //  a     b  %  a   m     n   =   x  -  u  *  q     y  -  v  *  q   b    a     x    y     u    v   =   a    r     u    v     m    n   gcd   =   b   return   gcd     x     y   def   modinv  (  a     m  ):   gcd     x     y   =   egcd  (  a     m  )   if   gcd   !=   1  :   return   None   # modular inverse does not exist   else  :   return   x   %   m   # affine cipher encryption function    # returns the cipher text   def   affine_encrypt  (  text     key  ):      '''    C = (a*P + b) % 26    '''   return   ''  .  join  ([   chr  (((   key  [  0  ]  *  (  ord  (  t  )   -   ord  (  'A'  ))   +   key  [  1  ]   )   %   26  )   +   ord  (  'A'  ))   for   t   in   text  .  upper  ()  .  replace  (  ' '     ''  )   ])   # affine cipher decryption function    # returns original text   def   affine_decrypt  (  cipher     key  ):      '''    P = (a^-1 * (C - b)) % 26    '''   return   ''  .  join  ([   chr  (((   modinv  (  key  [  0  ]   26  )  *  (  ord  (  c  )   -   ord  (  'A'  )   -   key  [  1  ]))   %   26  )   +   ord  (  'A'  ))   for   c   in   cipher   ])   # Driver Code to test the above functions   def   main  ():   # declaring text and key   text   =   'AFFINE CIPHER'   key   =   [  17     20  ]   # calling encryption function   affine_encrypted_text   =   affine_encrypt  (  text     key  )   print  (  'Encrypted Text:   {}  '  .  format  (   affine_encrypted_text   ))   # calling decryption function   print  (  'Decrypted Text:   {}  '  .  format   (   affine_decrypt  (  affine_encrypted_text     key  )   ))   if   __name__   ==   '__main__'  :   main  ()   # This code is contributed by   # Bhushan Borole   
C#
   // C# program to illustrate Affine Cipher   using     System  ;       class     GFG      {      // Key values of a and b      static     int     a     =     17  ;      static     int     b     =     20  ;      static     String     encryptMessage  (  char  []     msg  )         {      /// Cipher Text initially empty      String     cipher     =     ''  ;      for     (  int     i     =     0  ;     i      <     msg  .  Length  ;     i  ++  )      {      // Avoid space to be encrypted       /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      if     (  msg  [  i  ]     !=     ' '  )         {      cipher     =     cipher      +     (  char  )     ((((  a     *     (  msg  [  i  ]     -     'A'  ))     +     b  )     %     26  )     +     'A'  );      }     else     // else simply append space character      {      cipher     +=     msg  [  i  ];      }      }      return     cipher  ;      }      static     String     decryptCipher  (  String     cipher  )         {      String     msg     =     ''  ;      int     a_inv     =     0  ;      int     flag     =     0  ;      //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  int     i     =     0  ;     i      <     26  ;     i  ++  )         {      flag     =     (  a     *     i  )     %     26  ;      // Check if (a*i)%26 == 1      // then i will be the multiplicative inverse of a      if     (  flag     ==     1  )         {      a_inv     =     i  ;      }      }      for     (  int     i     =     0  ;     i      <     cipher  .  Length  ;     i  ++  )         {      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      if     (  cipher  [  i  ]     !=     ' '  )         {      msg     =     msg     +     (  char  )     (((  a_inv     *         ((  cipher  [  i  ]     +     'A'     -     b  ))     %     26  ))     +     'A'  );      }         else     //else simply append space character      {      msg     +=     cipher  [  i  ];      }      }      return     msg  ;      }      // Driver code      public     static     void     Main  (  String  []     args  )         {      String     msg     =     'AFFINE CIPHER'  ;      // Calling encryption function      String     cipherText     =     encryptMessage  (  msg  .  ToCharArray  ());      Console  .  WriteLine  (  'Encrypted Message is : '     +     cipherText  );      // Calling Decryption function      Console  .  WriteLine  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));      }   }   /* This code contributed by PrinciRaj1992 */   
JavaScript
   //Javascript program to illustrate Affine Cipher   //Key values of a and b   let     a     =     17  ;   let     b     =     20  ;   function     encryptMessage  (  msg  )   {      ///Cipher Text initially empty      let     cipher     =     ''  ;         for     (  let     i     =     0  ;     i      <     msg  .  length  ;     i  ++  )      {      // Avoid space to be encrypted       if  (  msg  [  i  ]     !=  ' '  )         /* applying encryption formula ( a x + b ) mod m    {here x is msg[i] and m is 26} and added 'A' to     bring it in range of ascii alphabet[ 65-90 | A-Z ] */      cipher     =     cipher     +     String  .  fromCharCode  ((((  a     *     (  msg  [  i  ].  charCodeAt  (  0  )  -  65  )     )     +     b  )     %     26  )     +     65  );      else      //else simply append space character      cipher     +=     msg  [  i  ];         }      return     cipher  ;   }   function     decryptCipher  (  cipher  )   {      let     msg     =     ''  ;      let     a_inv     =     0  ;      let     flag     =     0  ;          //Find a^-1 (the multiplicative inverse of a       //in the group of integers modulo m.)       for     (  let     i     =     0  ;     i      <     26  ;     i  ++  )      {      flag     =     (  a     *     i  )     %     26  ;          //Check if (a*i)%26 == 1      //then i will be the multiplicative inverse of a      if     (  flag     ==     1  )      {         a_inv     =     i  ;      }      }      for     (  let     i     =     0  ;     i      <     cipher  .  length  ;     i  ++  )      {      if  (  cipher  [  i  ]  !=  ' '  )      /*Applying decryption formula a^-1 ( x - b ) mod m     {here x is cipher[i] and m is 26} and added 'A'     to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */      msg     =     msg     +     String  .  fromCharCode  (((  a_inv     *     ((  cipher  [  i  ].  charCodeAt  (  0  )  +  65     -     b  ))     %     26  ))     +     65  );      else      //else simply append space character      msg     +=     cipher  [  i  ];         }      return     msg  ;   }   //Driver Program   let     msg     =     'AFFINE CIPHER'  ;   //Calling encryption function   let     cipherText     =     encryptMessage  (  msg  );   console  .  log  (  'Encrypted Message is : '     +     cipherText  );   //Calling Decryption function   console  .  log  (  'Decrypted Message is: '     +     decryptCipher  (  cipherText  ));   // The code is contributed by Arushi Jindal.    

Ausgabe
Encrypted Message is : UBBAHK CAPJKX Decrypted Message is: AFFINE CIPHER 

 

Quiz erstellen