Finden Sie die minimalen Anpassungskosten eines Arrays

Finden Sie die minimalen Anpassungskosten eines Arrays
Probieren Sie es bei GfG Practice aus #practiceLinkDiv { display: none !important; }

Ersetzen Sie bei einem gegebenen Array positiver Ganzzahlen jedes Element im Array so, dass die Differenz zwischen benachbarten Elementen im Array kleiner oder gleich einem bestimmten Ziel ist. Wir müssen die Anpassungskosten minimieren, die sich aus der Summe der Unterschiede zwischen neuen und alten Werten ergeben. Wir müssen grundsätzlich ?|A[i] - A minimieren neu [i]| wo 0 ? ich ? n-1 n ist die Größe von A[] und A neu [] ist das Array mit benachbarten Differenzen, die kleiner oder gleich dem Ziel sind. Angenommen, alle Elemente des Arrays sind kleiner als die Konstante M = 100.

Beispiele:  

    Input:     arr = [1 3 0 3] target = 1   
Output: Minimum adjustment cost is 3
Explanation: One of the possible solutions
is [2 3 2 3]
Input: arr = [2 3 2 3] target = 1
Output: Minimum adjustment cost is 0
Explanation: All adjacent elements in the input
array are already less than equal to given target
Input: arr = [55 77 52 61 39 6
25 60 49 47] target = 10
Output: Minimum adjustment cost is 75
Explanation: One of the possible solutions is
[55 62 52 49 39 29 30 40 49 47]
Recommended Practice Finden Sie die minimalen Anpassungskosten eines Arrays Probieren Sie es aus!

Um den Anpassungsaufwand zu minimieren ?|A[i] - A neu [i]| für alle Indexe i im Array |A[i] - A neu [i]| sollte so nahe wie möglich bei Null liegen. Auch |A[i] - A neu [i+1] ]| ? Ziel.
Dieses Problem kann gelöst werden durch dynamische Programmierung .

Wenn dp[i][j] den minimalen Anpassungsaufwand bei der Änderung von A[i] in j definiert, dann ist die DP-Beziehung definiert durch – 

 dp[i][j] = min{dp[i - 1][k]} + |j - A[i]|   
for all k's such that |k - j| ? target

Hier 0 ? ich ? n und 0 ? J ? M, wobei n die Anzahl der Elemente im Array und M = 100 ist. Wir müssen alle k berücksichtigen, sodass max(j - Ziel 0) ? k ? min(M j + Ziel)
Schließlich beträgt der minimale Anpassungsaufwand des Arrays min{dp[n - 1][j]} für alle 0 ? J ? M.

Algorithmus:

  • Erstellen Sie ein 2D-Array mit den Initialisierungen dp[n][M+1], um den geringsten Anpassungsaufwand für die Änderung von A[i] in j aufzuzeichnen, wobei n die Länge des Arrays und M sein Maximalwert ist.
  • Berechnen Sie den kleinsten Anpassungsaufwand für die Änderung von A[0] in j für das erste Element des Arrays dp[0][j] mithilfe der Formel dp[0][j] = abs (j – A[0]).
  • Ersetzen Sie A[i] durch j in den verbleibenden Array-Elementen dp[i][j] und verwenden Sie die Formel dp[i][j] = min(dp[i-1][k] + abs(A[i] - j)), wobei k alle möglichen Werte zwischen max(j-target0) und min(Mj+target) annimmt, um die minimalen Anpassungskosten zu erhalten.
  • Geben Sie als minimalen Anpassungsaufwand die niedrigste Zahl aus der letzten Zeile der dp-Tabelle an. 

Nachfolgend finden Sie die Umsetzung der obigen Idee:

C++
   // C++ program to find minimum adjustment cost of an array   #include          using     namespace     std  ;   #define M 100   // Function to find minimum adjustment cost of an array   int     minAdjustmentCost  (  int     A  []     int     n       int     target  )   {      // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      int     dp  [  n  ][  M     +     1  ];      // handle first element of array separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     abs  (  j     -     A  [  0  ]);      // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     INT_MAX  ;      // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      for     (  int     k     =     max  (  j  -  target    0  );     k      <=     min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     min  (  dp  [  i  ][  j  ]     dp  [  i     -     1  ][  k  ]     +     abs  (  A  [  i  ]     -     j  ));      }      }         // return minimum value from last row of dp table      int     res     =     INT_MAX  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     min  (  res       dp  [  n     -     1  ][  j  ]);      return     res  ;   }   // Driver Program to test above functions   int     main  ()   {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     target     =     10  ;      cout      < <     'Minimum adjustment cost is '       < <     minAdjustmentCost  (  arr       n       target  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find minimum adjustment cost of an array   import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      public     static     int     M     =     100  ;          // Function to find minimum adjustment cost of an array      static     int     minAdjustmentCost  (  int     A  []       int     n       int     target  )      {      // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      int  [][]     dp     =     new     int  [  n  ][  M     +     1  ]  ;          // handle first element of array separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]  );          // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     Integer  .  MAX_VALUE  ;          // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      int     k     =     Math  .  max  (  j  -  target    0  );      for     (     ;     k      <=     Math  .  min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     Math  .  min  (  dp  [  i  ][  j  ]       dp  [  i     -     1  ][  k  ]     +         Math  .  abs  (  A  [  i  ]     -     j  ));      }      }             // return minimum value from last row of dp table      int     res     =     Integer  .  MAX_VALUE  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  n     -     1  ][  j  ]  );          return     res  ;      }          // Driver program      public     static     void     main     (  String  []     args  )         {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     arr  .  length  ;      int     target     =     10  ;          System  .  out  .  println  (  'Minimum adjustment cost is '      +  minAdjustmentCost  (  arr       n       target  ));      }   }   // This code is contributed by Pramod Kumar   
Python3
   # Python3 program to find minimum   # adjustment cost of an array    M   =   100   # Function to find minimum   # adjustment cost of an array   def   minAdjustmentCost  (  A     n     target  ):   # dp[i][j] stores minimal adjustment    # cost on changing A[i] to j    dp   =   [[  0   for   i   in   range  (  M   +   1  )]   for   i   in   range  (  n  )]   # handle first element   # of array separately   for   j   in   range  (  M   +   1  ):   dp  [  0  ][  j  ]   =   abs  (  j   -   A  [  0  ])   # do for rest elements    # of the array    for   i   in   range  (  1     n  ):   # replace A[i] to j and    # calculate minimal adjustment   # cost dp[i][j]    for   j   in   range  (  M   +   1  ):   # initialize minimal adjustment   # cost to INT_MAX   dp  [  i  ][  j  ]   =   100000000   # consider all k such that   # k >= max(j - target 0) and   # k  <= min(M j + target) and    # take minimum   for   k   in   range  (  max  (  j   -   target     0  )   min  (  M     j   +   target  )   +   1  ):   dp  [  i  ][  j  ]   =   min  (  dp  [  i  ][  j  ]   dp  [  i   -   1  ][  k  ]   +   abs  (  A  [  i  ]   -   j  ))   # return minimum value from    # last row of dp table   res   =   10000000   for   j   in   range  (  M   +   1  ):   res   =   min  (  res     dp  [  n   -   1  ][  j  ])   return   res   # Driver Code    arr  =   [  55     77     52     61     39     6     25     60     49     47  ]   n   =   len  (  arr  )   target   =   10   print  (  'Minimum adjustment cost is'     minAdjustmentCost  (  arr     n     target  )   sep   =   ' '  )   # This code is contributed    # by sahilshelangia   
C#
   // C# program to find minimum adjustment   // cost of an array   using     System  ;   class     GFG     {          public     static     int     M     =     100  ;          // Function to find minimum adjustment      // cost of an array      static     int     minAdjustmentCost  (  int     []  A       int     n        int     target  )      {          // dp[i][j] stores minimal adjustment      // cost on changing A[i] to j      int  []     dp     =     new     int  [  n    M     +     1  ];      // handle first element of array      // separately      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0    j  ]     =     Math  .  Abs  (  j     -     A  [  0  ]);      // do for rest elements of the array      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate      // minimal adjustment cost dp[i][j]      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment      // cost to INT_MAX      dp  [  i    j  ]     =     int  .  MaxValue  ;      // consider all k such that       // k >= max(j - target 0) and      // k  <= min(M j + target) and      // take minimum      int     k     =     Math  .  Max  (  j     -     target       0  );          for     (     ;     k      <=     Math  .  Min  (  M       j     +      target  );     k  ++  )      dp  [  i    j  ]     =     Math  .  Min  (  dp  [  i    j  ]      dp  [  i     -     1    k  ]      +     Math  .  Abs  (  A  [  i  ]     -     j  ));      }      }         // return minimum value from last      // row of dp table      int     res     =     int  .  MaxValue  ;         for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  Min  (  res       dp  [  n     -     1    j  ]);      return     res  ;      }          // Driver program      public     static     void     Main     ()         {      int     []  arr     =     {  55       77       52       61       39        6       25       60       49       47  };      int     n     =     arr  .  Length  ;      int     target     =     10  ;      Console  .  WriteLine  (  'Minimum adjustment'      +     ' cost is '      +     minAdjustmentCost  (  arr       n       target  ));      }   }   // This code is contributed by Sam007.   
JavaScript
    <  script  >      // Javascript program to find minimum adjustment cost of an array      let     M     =     100  ;          // Function to find minimum adjustment cost of an array      function     minAdjustmentCost  (  A       n       target  )      {          // dp[i][j] stores minimal adjustment cost on changing      // A[i] to j      let     dp     =     new     Array  (  n  );      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      {      dp  [  i  ]     =     new     Array  (  n  );      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      {      dp  [  i  ][  j  ]     =     0  ;      }      }          // handle first element of array separately      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  0  ][  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]);          // do for rest elements of the array      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )      {      // replace A[i] to j and calculate minimal adjustment      // cost dp[i][j]      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      {      // initialize minimal adjustment cost to INT_MAX      dp  [  i  ][  j  ]     =     Number  .  MAX_VALUE  ;          // consider all k such that k >= max(j - target 0) and      // k  <= min(M j + target) and take minimum      let     k     =     Math  .  max  (  j  -  target    0  );      for     (     ;     k      <=     Math  .  min  (  M    j  +  target  );     k  ++  )      dp  [  i  ][  j  ]     =     Math  .  min  (  dp  [  i  ][  j  ]     dp  [  i     -     1  ][  k  ]     +         Math  .  abs  (  A  [  i  ]     -     j  ));      }      }             // return minimum value from last row of dp table      let     res     =     Number  .  MAX_VALUE  ;         for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  n     -     1  ][  j  ]);          return     res  ;      }          let     arr     =     [  55       77       52       61       39       6       25       60       49       47  ];      let     n     =     arr  .  length  ;      let     target     =     10  ;      document  .  write  (  'Minimum adjustment cost is '      +  minAdjustmentCost  (  arr       n       target  ));          // This code is contributed by decode2207.    <  /script>   
PHP
      // PHP program to find minimum    // adjustment cost of an array   $M   =   100  ;   // Function to find minimum    // adjustment cost of an array   function   minAdjustmentCost  (   $A     $n     $target  )   {   // dp[i][j] stores minimal    // adjustment cost on changing   // A[i] to j   global   $M  ;   $dp   =   array  (  array  ());   // handle first element    // of array separately   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   $dp  [  0  ][  $j  ]   =   abs  (  $j   -   $A  [  0  ]);   // do for rest    // elements of the array   for  (  $i   =   1  ;   $i    <   $n  ;   $i  ++  )   {   // replace A[i] to j and    // calculate minimal adjustment   // cost dp[i][j]   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   {   // initialize minimal adjustment   // cost to INT_MAX   $dp  [  $i  ][  $j  ]   =   PHP_INT_MAX  ;   // consider all k such that    // k >= max(j - target 0) and   // k  <= min(M j + target) and   // take minimum   for  (  $k   =   max  (  $j   -   $target     0  );   $k    <=   min  (  $M     $j   +   $target  );   $k  ++  )   $dp  [  $i  ][  $j  ]   =   min  (  $dp  [  $i  ][  $j  ]   $dp  [  $i   -   1  ][  $k  ]   +   abs  (  $A  [  $i  ]   -   $j  ));   }   }   // return minimum value    // from last row of dp table   $res   =   PHP_INT_MAX  ;   for  (  $j   =   0  ;   $j    <=   $M  ;   $j  ++  )   $res   =   min  (  $res     $dp  [  $n   -   1  ][  $j  ]);   return   $res  ;   }   // Driver Code   $arr   =   array  (  55     77     52     61     39     6     25     60     49     47  );   $n   =   count  (  $arr  );   $target   =   10  ;   echo   'Minimum adjustment cost is '      minAdjustmentCost  (  $arr     $n     $target  );   // This code is contributed by anuj_67.   ?>   

Ausgabe
Minimum adjustment cost is 75 

Zeitkomplexität: O(n*m 2 )
Hilfsraum: O(n *m)


Effizienter Ansatz: Platzoptimierung

Im vorherigen Ansatz der aktuelle Wert dp[i][j] hängt nur von den aktuellen und vorherigen Zeilenwerten ab DP . Um die räumliche Komplexität zu optimieren, verwenden wir ein einzelnes 1D-Array zum Speichern der Berechnungen.

Umsetzungsschritte:

  • Erstellen Sie einen 1D-Vektor dp der Größe m+1 .
  • Legen Sie einen Basisfall fest, indem Sie die Werte von initialisieren DP .
  • Nun iterieren Sie mit Hilfe einer verschachtelten Schleife über Teilprobleme und erhalten Sie den aktuellen Wert aus vorherigen Berechnungen.
  • Erstellen Sie nun einen temporären 1D-Vektor prev_dp Wird verwendet, um die aktuellen Werte aus früheren Berechnungen zu speichern.
  • Weisen Sie nach jeder Iteration den Wert von zu prev_dp zu dp für die weitere Iteration.
  • Initialisieren Sie eine Variable res um die endgültige Antwort zu speichern und durch Iteration durch den Dp zu aktualisieren.
  • Kehren Sie schließlich zurück und drucken Sie die endgültige Antwort aus, die in gespeichert ist res .

Durchführung: 
 

C++
   #include          using     namespace     std  ;   #define M 100   // Function to find minimum adjustment cost of an array   int     minAdjustmentCost  (  int     A  []     int     n       int     target  )   {      int     dp  [  M     +     1  ];     // Array to store the minimum adjustment costs for each value      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  j  ]     =     abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      int     prev_dp  [  M     +     1  ];      memcpy  (  prev_dp       dp       sizeof  (  dp  ));     // Store the previous row's minimum costs      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     INT_MAX  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     max  (  j     -     target       0  );     k      <=     min  (  M       j     +     target  );     k  ++  )      dp  [  j  ]     =     min  (  dp  [  j  ]     prev_dp  [  k  ]     +     abs  (  A  [  i  ]     -     j  ));      }      }      int     res     =     INT_MAX  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      return     res  ;     // Return the minimum adjustment cost   }   int     main  ()   {      int     arr  []     =     {  55       77       52       61       39       6       25       60       49       47  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      int     target     =     10  ;      cout      < <     'Minimum adjustment cost is '       < <     minAdjustmentCost  (  arr       n       target  )      < <     endl  ;      return     0  ;   }   
Java
   import     java.util.Arrays  ;   public     class   MinimumAdjustmentCost     {      static     final     int     M     =     100  ;      // Function to find the minimum adjustment cost of an array      static     int     minAdjustmentCost  (  int  []     A       int     n       int     target  )     {      int  []     dp     =     new     int  [  M     +     1  ]  ;      // Initialize the first row with absolute differences      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      dp  [  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]  );      }      // Iterate over the array elements      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      int  []     prev_dp     =     Arrays  .  copyOf  (  dp       dp  .  length  );     // Store the previous row's minimum costs      // Iterate over the possible values      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      dp  [  j  ]     =     Integer  .  MAX_VALUE  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     Math  .  max  (  j     -     target       0  );     k      <=     Math  .  min  (  M       j     +     target  );     k  ++  )     {      dp  [  j  ]     =     Math  .  min  (  dp  [  j  ]       prev_dp  [  k  ]     +     Math  .  abs  (  A  [  i  ]     -     j  ));      }      }      }      int     res     =     Integer  .  MAX_VALUE  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     {      res     =     Math  .  min  (  res       dp  [  j  ]  );     // Find the minimum cost in the last row      }      return     res  ;     // Return the minimum adjustment cost      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {     55       77       52       61       39       6       25       60       49       47     };      int     n     =     arr  .  length  ;      int     target     =     10  ;      System  .  out  .  println  (  'Minimum adjustment cost is '     +     minAdjustmentCost  (  arr       n       target  ));      }   }   
Python3
   def   min_adjustment_cost  (  A     n     target  ):   M   =   100   dp   =   [  0  ]   *   (  M   +   1  )   # Initialize the first row of dp with absolute differences   for   j   in   range  (  M   +   1  ):   dp  [  j  ]   =   abs  (  j   -   A  [  0  ])   # Iterate over the array elements   for   i   in   range  (  1     n  ):   prev_dp   =   dp  [:]   # Store the previous row's minimum costs   for   j   in   range  (  M   +   1  ):   dp  [  j  ]   =   float  (  'inf'  )   # Initialize the current value with maximum cost   # Find the minimum cost by considering the range of previous values   for   k   in   range  (  max  (  j   -   target     0  )   min  (  M     j   +   target  )   +   1  ):   dp  [  j  ]   =   min  (  dp  [  j  ]   prev_dp  [  k  ]   +   abs  (  A  [  i  ]   -   j  ))   res   =   float  (  'inf'  )   for   j   in   range  (  M   +   1  ):   res   =   min  (  res     dp  [  j  ])   # Find the minimum cost in the last row   return   res   if   __name__   ==   '__main__'  :   arr   =   [  55     77     52     61     39     6     25     60     49     47  ]   n   =   len  (  arr  )   target   =   10   print  (  'Minimum adjustment cost is'     min_adjustment_cost  (  arr     n     target  ))   
C#
   using     System  ;   class     Program   {      const     int     M     =     100  ;      // Function to find minimum adjustment cost of an array      static     int     MinAdjustmentCost  (  int  []     A       int     n       int     target  )      {      int  []     dp     =     new     int  [  M     +     1  ];     // Array to store the minimum adjustment costs for each value      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      dp  [  j  ]     =     Math  .  Abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      }      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      int  []     prevDp     =     (  int  [])  dp  .  Clone  ();     // Store the previous row's minimum costs      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     int  .  MaxValue  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  int     k     =     Math  .  Max  (  j     -     target       0  );     k      <=     Math  .  Min  (  M       j     +     target  );     k  ++  )      {      dp  [  j  ]     =     Math  .  Min  (  dp  [  j  ]     prevDp  [  k  ]     +     Math  .  Abs  (  A  [  i  ]     -     j  ));      }      }      }      int     res     =     int  .  MaxValue  ;      for     (  int     j     =     0  ;     j      <=     M  ;     j  ++  )      {      res     =     Math  .  Min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      }      return     res  ;     // Return the minimum adjustment cost      }      static     void     Main  ()      {      int  []     arr     =     {     55       77       52       61       39       6       25       60       49       47     };      int     n     =     arr  .  Length  ;      int     target     =     10  ;      Console  .  WriteLine  (  'Minimum adjustment cost is '     +     MinAdjustmentCost  (  arr       n       target  ));      }   }   
JavaScript
   const     M     =     100  ;   // Function to find minimum adjustment cost of an array   function     minAdjustmentCost  (  A       n       target  )     {      let     dp     =     new     Array  (  M     +     1  );     // Array to store the minimum adjustment costs for each value      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      dp  [  j  ]     =     Math  .  abs  (  j     -     A  [  0  ]);     // Initialize the first row with the absolute differences      for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     // Iterate over the array elements      {      let     prev_dp     =     [...  dp  ];     // Store the previous row's minimum costs      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )     // Iterate over the possible values      {      dp  [  j  ]     =     Number  .  MAX_VALUE  ;     // Initialize the current value with maximum cost      // Find the minimum cost by considering the range of previous values      for     (  let     k     =     Math  .  max  (  j     -     target       0  );     k      <=     Math  .  min  (  M       j     +     target  );     k  ++  )      dp  [  j  ]     =     Math  .  min  (  dp  [  j  ]     prev_dp  [  k  ]     +     Math  .  abs  (  A  [  i  ]     -     j  ));      }      }      let     res     =     Number  .  MAX_VALUE  ;      for     (  let     j     =     0  ;     j      <=     M  ;     j  ++  )      res     =     Math  .  min  (  res       dp  [  j  ]);     // Find the minimum cost in the last row      return     res  ;     // Return the minimum adjustment cost   }   let     arr     =     [  55       77       52       61       39       6       25       60       49       47  ];   let     n     =     arr  .  length  ;   let     target     =     10  ;   console  .  log  (  'Minimum adjustment cost is '     +     minAdjustmentCost  (  arr       n       target  ));   // This code is contributed by Kanchan Agarwal   


Ausgabe

 Minimum adjustment cost is 75   

Zeitkomplexität: O(n*m 2 )
Hilfsraum: O (m)