Palindrom ved frontindføring

Palindrom ved frontindføring
Prøv det på GfG Practice tegn-til-føje-på-front-til-Palindrome

Givet en streng s bestående af kun små engelske bogstaver find den minimum antal tegn, der skal være tilføjet til front af s for at gøre det til et palindrom.
Note: Et palindrom er en streng, der læser det samme frem og tilbage.

Eksempler:  

Input : s = 'abc'
Produktion : 2
Forklaring : Vi kan lave ovenstående strengpalindrom som 'cbabc' ved at tilføje 'b' og 'c' foran.

Input : s = 'aacecaaaa'
Produktion : 2
Forklaring : Vi kan lave ovenstående strengpalindrom som 'aaaacecaaaa' ved at tilføje to a'er foran på strengen.

Indholdsfortegnelse

[Naiv tilgang] Kontrollerer alle præfikser - O(n^2) Tid og O(1) Mellemrum

Ideen er baseret på den observation, at vi skal finde det længste præfiks fra en given streng, som også er et palindrom. Så vil minimum forreste tegn, der skal tilføjes for at lave en given strengpalindrom, være de resterende tegn.

C++
   #include          using     namespace     std  ;   // function to check if the substring s[i...j] is a palindrome   bool     isPalindrome  (  string     &  s       int     i       int     j  )     {      while     (  i      <     j  )     {          // if characters at the ends are not equal       // it's not a palindrome      if     (  s  [  i  ]     !=     s  [  j  ])     {      return     false  ;      }      i  ++  ;      j  --  ;      }      return     true  ;   }   int     minChar  (  string     &  s  )     {      int     cnt     =     0  ;      int     i     =     s  .  size  ()     -     1  ;          // iterate from the end of the string checking for the       // longestpalindrome starting from the beginning      while     (  i     >=     0     &&     !  isPalindrome  (  s       0       i  ))     {          i  --  ;      cnt  ++  ;      }          return     cnt  ;   }   int     main  ()     {      string     s     =     'aacecaaaa'  ;      cout      < <     minChar  (  s  );      return     0  ;   }   
C
   #include         #include         #include         // function to check if the substring s[i...j] is a palindrome   bool     isPalindrome  (  char     s  []     int     i       int     j  )     {      while     (  i      <     j  )     {          // if characters at the ends are not the same       // it's not a palindrome      if     (  s  [  i  ]     !=     s  [  j  ])     {      return     false  ;      }      i  ++  ;      j  --  ;      }      return     true  ;   }   int     minChar  (  char     s  [])     {      int     cnt     =     0  ;      int     i     =     strlen  (  s  )     -     1  ;          // iterate from the end of the string checking for the       // longest palindrome starting from the beginning      while     (  i     >=     0     &&     !  isPalindrome  (  s       0       i  ))     {          i  --  ;      cnt  ++  ;      }          return     cnt  ;   }   int     main  ()     {          char     s  []     =     'aacecaaaa'  ;      printf  (  '%d'       minChar  (  s  ));      return     0  ;   }   
Java
   class   GfG     {      // function to check if the substring       // s[i...j] is a palindrome      static     boolean     isPalindrome  (  String     s       int     i       int     j  )     {      while     (  i      <     j  )     {          // if characters at the ends are not the same       // it's not a palindrome      if     (  s  .  charAt  (  i  )     !=     s  .  charAt  (  j  ))     {      return     false  ;      }      i  ++  ;      j  --  ;      }      return     true  ;      }      static     int     minChar  (  String     s  )     {      int     cnt     =     0  ;      int     i     =     s  .  length  ()     -     1  ;          // iterate from the end of the string checking for the       // longest palindrome starting from the beginning      while     (  i     >=     0     &&     !  isPalindrome  (  s       0       i  ))     {      i  --  ;      cnt  ++  ;      }          return     cnt  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'aacecaaaa'  ;      System  .  out  .  println  (  minChar  (  s  ));      }   }   
Python
   # function to check if the substring s[i...j] is a palindrome   def   isPalindrome  (  s     i     j  ):   while   i    <   j  :   # if characters at the ends are not the same    # it's not a palindrome   if   s  [  i  ]   !=   s  [  j  ]:   return   False   i   +=   1   j   -=   1   return   True   def   minChar  (  s  ):   cnt   =   0   i   =   len  (  s  )   -   1   # iterate from the end of the string checking for the    # longest palindrome starting from the beginning   while   i   >=   0   and   not   isPalindrome  (  s     0     i  ):   i   -=   1   cnt   +=   1   return   cnt   if   __name__   ==   '__main__'  :   s   =   'aacecaaaa'   print  (  minChar  (  s  ))   
C#
   using     System  ;   class     GfG     {      // function to check if the substring s[i...j] is a palindrome      static     bool     isPalindrome  (  string     s       int     i       int     j  )     {      while     (  i      <     j  )     {          // if characters at the ends are not the same       // it's not a palindrome      if     (  s  [  i  ]     !=     s  [  j  ])     {      return     false  ;      }      i  ++  ;      j  --  ;      }      return     true  ;      }      static     int     minChar  (  string     s  )     {      int     cnt     =     0  ;      int     i     =     s  .  Length     -     1  ;          // iterate from the end of the string checking for the longest       // palindrome starting from the beginning      while     (  i     >=     0     &&     !  isPalindrome  (  s       0       i  ))     {      i  --  ;      cnt  ++  ;      }          return     cnt  ;      }      static     void     Main  ()     {          string     s     =     'aacecaaaa'  ;      Console  .  WriteLine  (  minChar  (  s  ));      }   }   
JavaScript
   // function to check if the substring s[i...j] is a palindrome   function     isPalindrome  (  s       i       j  )     {      while     (  i      <     j  )     {          // if characters at the ends are not the same       // it's not a palindrome      if     (  s  [  i  ]     !==     s  [  j  ])     {      return     false  ;      }      i  ++  ;      j  --  ;      }      return     true  ;   }   function     minChar  (  s  )     {      let     cnt     =     0  ;      let     i     =     s  .  length     -     1  ;          // iterate from the end of the string checking for the      // longest palindrome starting from the beginning      while     (  i     >=     0     &&     !  isPalindrome  (  s       0       i  ))     {          i  --  ;      cnt  ++  ;      }          return     cnt  ;   }   // Driver code   let     s     =     'aacecaaaa'  ;   console  .  log  (  minChar  (  s  ));   

Produktion
2 

[Forventet tilgang 1] Brug af lps-array af KMP-algoritme - O(n) tid og O(n) rum

Den vigtigste observation er, at det længste palindromiske præfiks af en streng bliver det længste palindromiske suffiks af dens bagside.
Givet en streng s = 'aacecaaaa' dens omvendte revS = 'aaaacecaa'. Det længste palindromiske præfiks af s er 'aacecaa'.

For at finde dette effektivt bruger vi LPS-arrayet fra KMP algoritme . Vi sammenkæder den oprindelige streng med et specialtegn og dets omvendte: s + '$' + revS.
LPS-arrayet for denne kombinerede streng hjælper med at identificere det længste præfiks af s, der matcher et suffiks af revS, som også repræsenterer det palindromiske præfiks af s.

Den sidste værdi af LPS-arrayet fortæller os, hvor mange tegn, der allerede danner et palindrom i begyndelsen. Det mindste antal tegn, der skal tilføjes for at gøre s til et palindrom, er således s.length() - lps.back().

C++
   #include          #include          #include         using     namespace     std  ;   vector   <  int  >     computeLPSArray  (  string     &  pat  )     {      int     n     =     pat  .  length  ();      vector   <  int  >     lps  (  n  );      // lps[0] is always 0      lps  [  0  ]     =     0  ;      int     len     =     0  ;      // loop calculates lps[i] for i = 1 to M-1      int     i     =     1  ;      while     (  i      <     n  )     {      // if the characters match increment len      // and set lps[i]      if     (  pat  [  i  ]     ==     pat  [  len  ])     {      len  ++  ;      lps  [  i  ]     =     len  ;      i  ++  ;      }      // if there is a mismatch      else     {      // if len is not zero update len to      // the last known prefix length      if     (  len     !=     0  )     {      len     =     lps  [  len     -     1  ];      }      // no prefix matches set lps[i] to 0      else     {      lps  [  i  ]     =     0  ;      i  ++  ;      }      }      }      return     lps  ;   }   // returns minimum character to be added at   // front to make string palindrome   int     minChar  (  string     &  s  )     {      int     n     =     s  .  length  ();      string     rev     =     s  ;      reverse  (  rev  .  begin  ()     rev  .  end  ());      // get concatenation of string special character      // and reverse string      s     =     s     +     '$'     +     rev  ;      // get LPS array of this concatenated string      vector   <  int  >     lps     =     computeLPSArray  (  s  );      // by subtracting last entry of lps vector from      // string length we will get our result      return     (  n     -     lps  .  back  ());   }   int     main  ()     {      string     s     =     'aacecaaaa'  ;      cout      < <     minChar  (  s  );      return     0  ;   }   
Java
   import     java.util.ArrayList  ;   class   GfG     {      static     int  []     computeLPSArray  (  String     pat  )     {      int     n     =     pat  .  length  ();      int  []     lps     =     new     int  [  n  ]  ;      // lps[0] is always 0      lps  [  0  ]     =     0  ;      int     len     =     0  ;      // loop calculates lps[i] for i = 1 to n-1      int     i     =     1  ;      while     (  i      <     n  )     {      // if the characters match increment len      // and set lps[i]      if     (  pat  .  charAt  (  i  )     ==     pat  .  charAt  (  len  ))     {      len  ++  ;      lps  [  i  ]     =     len  ;      i  ++  ;      }      // if there is a mismatch      else     {      // if len is not zero update len to      // the last known prefix length      if     (  len     !=     0  )     {      len     =     lps  [  len     -     1  ]  ;      }      // no prefix matches set lps[i] to 0      else     {      lps  [  i  ]     =     0  ;      i  ++  ;      }      }      }      return     lps  ;      }      // returns minimum character to be added at      // front to make string palindrome      static     int     minChar  (  String     s  )     {      int     n     =     s  .  length  ();      String     rev      =     new     StringBuilder  (  s  ).  reverse  ().  toString  ();      // get concatenation of string special character      // and reverse string      s     =     s     +     '$'     +     rev  ;      // get LPS array of this concatenated string      int  []     lps     =     computeLPSArray  (  s  );      // by subtracting last entry of lps array from      // string length we will get our result      return     (  n     -     lps  [  lps  .  length     -     1  ]  );      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'aacecaaaa'  ;      System  .  out  .  println  (  minChar  (  s  ));      }   }   
Python
   def   computeLPSArray  (  pat  ):   n   =   len  (  pat  )   lps   =   [  0  ]   *   n   # lps[0] is always 0   len_lps   =   0   # loop calculates lps[i] for i = 1 to n-1   i   =   1   while   i    <   n  :   # if the characters match increment len   # and set lps[i]   if   pat  [  i  ]   ==   pat  [  len_lps  ]:   len_lps   +=   1   lps  [  i  ]   =   len_lps   i   +=   1   # if there is a mismatch   else  :   # if len is not zero update len to    # the last known prefix length   if   len_lps   !=   0  :   len_lps   =   lps  [  len_lps   -   1  ]   # no prefix matches set lps[i] to 0   else  :   lps  [  i  ]   =   0   i   +=   1   return   lps   # returns minimum character to be added at   # front to make string palindrome   def   minChar  (  s  ):   n   =   len  (  s  )   rev   =   s  [::  -  1  ]   # get concatenation of string special character   # and reverse string   s   =   s   +   '$'   +   rev   # get LPS array of this concatenated string   lps   =   computeLPSArray  (  s  )   # by subtracting last entry of lps array from   # string length we will get our result   return   n   -   lps  [  -  1  ]   if   __name__   ==   '__main__'  :   s   =   'aacecaaaa'   print  (  minChar  (  s  ))   
C#
   using     System  ;   class     GfG     {      static     int  []     computeLPSArray  (  string     pat  )     {      int     n     =     pat  .  Length  ;      int  []     lps     =     new     int  [  n  ];      // lps[0] is always 0      lps  [  0  ]     =     0  ;      int     len     =     0  ;      // loop calculates lps[i] for i = 1 to n-1      int     i     =     1  ;      while     (  i      <     n  )     {      // if the characters match increment len      // and set lps[i]      if     (  pat  [  i  ]     ==     pat  [  len  ])     {      len  ++  ;      lps  [  i  ]     =     len  ;      i  ++  ;      }      // if there is a mismatch      else     {      // if len is not zero update len to      // the last known prefix length      if     (  len     !=     0  )     {      len     =     lps  [  len     -     1  ];      }      // no prefix matches set lps[i] to 0      else     {      lps  [  i  ]     =     0  ;      i  ++  ;      }      }      }      return     lps  ;      }      // minimum character to be added at      // front to make string palindrome      static     int     minChar  (  string     s  )     {      int     n     =     s  .  Length  ;      char  []     charArray     =     s  .  ToCharArray  ();      Array  .  Reverse  (  charArray  );      string     rev     =     new     string  (  charArray  );      // get concatenation of string special character      // and reverse string      s     =     s     +     '$'     +     rev  ;      // get LPS array of this concatenated string      int  []     lps     =     computeLPSArray  (  s  );      // by subtracting last entry of lps array from      // string length we will get our result      return     n     -     lps  [  lps  .  Length     -     1  ];      }      static     void     Main  ()     {      string     s     =     'aacecaaaa'  ;      Console  .  WriteLine  (  minChar  (  s  ));      }   }   
JavaScript
   function     computeLPSArray  (  pat  )     {      let     n     =     pat  .  length  ;      let     lps     =     new     Array  (  n  ).  fill  (  0  );      // lps[0] is always 0      let     len     =     0  ;      // loop calculates lps[i] for i = 1 to n-1      let     i     =     1  ;      while     (  i      <     n  )     {      // if the characters match increment len      // and set lps[i]      if     (  pat  [  i  ]     ===     pat  [  len  ])     {      len  ++  ;      lps  [  i  ]     =     len  ;      i  ++  ;      }      // if there is a mismatch      else     {      // if len is not zero update len to      // the last known prefix length      if     (  len     !==     0  )     {      len     =     lps  [  len     -     1  ];      }      // no prefix matches set lps[i] to 0      else     {      lps  [  i  ]     =     0  ;      i  ++  ;      }      }      }      return     lps  ;   }   // returns minimum character to be added at   // front to make string palindrome   function     minChar  (  s  )     {      let     n     =     s  .  length  ;      let     rev     =     s  .  split  (  ''  ).  reverse  ().  join  (  ''  );      // get concatenation of string special character      // and reverse string      s     =     s     +     '$'     +     rev  ;      // get LPS array of this concatenated string      let     lps     =     computeLPSArray  (  s  );      // by subtracting last entry of lps array from      // string length we will get our result      return     n     -     lps  [  lps  .  length     -     1  ];   }   // Driver Code   let     s     =     'aacecaaaa'  ;   console  .  log  (  minChar  (  s  ));   

Produktion
2 

[Forventet tilgang 2] Brug af Manachers algoritme

Ideen er at bruge Manachers algoritme for effektivt at finde alle palindromiske understrenge i lineær tid.
Vi transformerer strengen ved at indsætte specialtegn (#) for at håndtere både lige og ulige længde palindromer ensartet.
Efter forbehandling scanner vi fra enden af ​​den originale streng og bruger palindromradius-arrayet til at kontrollere, om præfikset s[0...i] er et palindrom. Det første indeks i giver os det længste palindromiske præfiks, og vi returnerer n - (i + 1) som minimumstegn, der skal tilføjes.

C++
   #include          #include         #include         using     namespace     std  ;   // manacher's algorithm for finding longest    // palindromic substrings   class     manacher     {   public  :      // array to store palindrome lengths centered       // at each position      vector   <  int  >     p  ;      // modified string with separators and sentinels      string     ms  ;         manacher  (  string     &  s  )     {      ms     =     '@'  ;      for     (  char     c     :     s  )     {      ms     +=     '#'     +     string  (  1       c  );      }      ms     +=     '#$'  ;      runManacher  ();      }      // core Manacher's algorithm      void     runManacher  ()     {      int     n     =     ms  .  size  ();      p  .  assign  (  n       0  );      int     l     =     0       r     =     0  ;      for     (  int     i     =     1  ;     i      <     n     -     1  ;     ++  i  )     {      if     (  i      <     r  )      p  [  i  ]     =     min  (  r     -     i       p  [  r     +     l     -     i  ]);      // expand around the current center      while     (  ms  [  i     +     1     +     p  [  i  ]]     ==     ms  [  i     -     1     -     p  [  i  ]])      ++  p  [  i  ];      // update center if palindrome goes beyond      // current right boundary      if     (  i     +     p  [  i  ]     >     r  )     {      l     =     i     -     p  [  i  ];      r     =     i     +     p  [  i  ];      }      }      }      // returns the length of the longest palindrome      // centered at given position      int     getLongest  (  int     cen       int     odd  )     {      int     pos     =     2     *     cen     +     2     +     !  odd  ;      return     p  [  pos  ];      }      // checks whether substring s[l...r] is a palindrome      bool     check  (  int     l       int     r  )     {      int     len     =     r     -     l     +     1  ;      int     longest     =     getLongest  ((  l     +     r  )     /     2       len     %     2  );      return     len      <=     longest  ;      }   };   // returns the minimum number of characters to add at the    // front to make the given string a palindrome   int     minChar  (  string     &  s  )     {      int     n     =     s  .  size  ();      manacher     m  (  s  );      // scan from the end to find the longest       // palindromic prefix      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     --  i  )     {      if     (  m  .  check  (  0       i  ))      return     n     -     (  i     +     1  );      }      return     n     -     1  ;   }   int     main  ()     {      string     s     =     'aacecaaaa'  ;      cout      < <     minChar  (  s  )      < <     endl  ;      return     0  ;   }   
Java
   class   GfG     {          // manacher's algorithm for finding longest       // palindromic substrings      static     class   manacher     {      // array to store palindrome lengths centered       // at each position      int  []     p  ;      // modified string with separators and sentinels      String     ms  ;      manacher  (  String     s  )     {      StringBuilder     sb     =     new     StringBuilder  (  '@'  );      for     (  char     c     :     s  .  toCharArray  ())     {      sb  .  append  (  '#'  ).  append  (  c  );      }      sb  .  append  (  '#$'  );      ms     =     sb  .  toString  ();      runManacher  ();      }      // core Manacher's algorithm      void     runManacher  ()     {      int     n     =     ms  .  length  ();      p     =     new     int  [  n  ]  ;      int     l     =     0       r     =     0  ;      for     (  int     i     =     1  ;     i      <     n     -     1  ;     ++  i  )     {      if     (  i      <     r  )      p  [  i  ]     =     Math  .  min  (  r     -     i       p  [  r     +     l     -     i  ]  );      // expand around the current center      while     (  ms  .  charAt  (  i     +     1     +     p  [  i  ]  )     ==     ms  .  charAt  (  i     -     1     -     p  [  i  ]  ))      p  [  i  ]++  ;      // update center if palindrome goes beyond       // current right boundary      if     (  i     +     p  [  i  ]     >     r  )     {      l     =     i     -     p  [  i  ]  ;      r     =     i     +     p  [  i  ]  ;      }      }      }      // returns the length of the longest palindrome       // centered at given position      int     getLongest  (  int     cen       int     odd  )     {      int     pos     =     2     *     cen     +     2     +     (  odd     ==     0     ?     1     :     0  );      return     p  [  pos  ]  ;      }      // checks whether substring s[l...r] is a palindrome      boolean     check  (  int     l       int     r  )     {      int     len     =     r     -     l     +     1  ;      int     longest     =     getLongest  ((  l     +     r  )     /     2       len     %     2  );      return     len      <=     longest  ;      }      }      // returns the minimum number of characters to add at the       // front to make the given string a palindrome      static     int     minChar  (  String     s  )     {      int     n     =     s  .  length  ();      manacher     m     =     new     manacher  (  s  );      // scan from the end to find the longest       // palindromic prefix      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     --  i  )     {      if     (  m  .  check  (  0       i  ))      return     n     -     (  i     +     1  );      }      return     n     -     1  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'aacecaaaa'  ;      System  .  out  .  println  (  minChar  (  s  ));      }   }   
Python
   # manacher's algorithm for finding longest    # palindromic substrings   class   manacher  :   # array to store palindrome lengths centered    # at each position   def   __init__  (  self     s  ):   # modified string with separators and sentinels   self  .  ms   =   '@'   for   c   in   s  :   self  .  ms   +=   '#'   +   c   self  .  ms   +=   '#$'   self  .  p   =   []   self  .  runManacher  ()   # core Manacher's algorithm   def   runManacher  (  self  ):   n   =   len  (  self  .  ms  )   self  .  p   =   [  0  ]   *   n   l   =   r   =   0   for   i   in   range  (  1     n   -   1  ):   if   i    <   r  :   self  .  p  [  i  ]   =   min  (  r   -   i     self  .  p  [  r   +   l   -   i  ])   # expand around the current center   while   self  .  ms  [  i   +   1   +   self  .  p  [  i  ]]   ==   self  .  ms  [  i   -   1   -   self  .  p  [  i  ]]:   self  .  p  [  i  ]   +=   1   # update center if palindrome goes beyond    # current right boundary   if   i   +   self  .  p  [  i  ]   >   r  :   l   =   i   -   self  .  p  [  i  ]   r   =   i   +   self  .  p  [  i  ]   # returns the length of the longest palindrome    # centered at given position   def   getLongest  (  self     cen     odd  ):   pos   =   2   *   cen   +   2   +   (  0   if   odd   else   1  )   return   self  .  p  [  pos  ]   # checks whether substring s[l...r] is a palindrome   def   check  (  self     l     r  ):   length   =   r   -   l   +   1   longest   =   self  .  getLongest  ((  l   +   r  )   //   2     length   %   2  )   return   length    <=   longest   # returns the minimum number of characters to add at the    # front to make the given string a palindrome   def   minChar  (  s  ):   n   =   len  (  s  )   m   =   manacher  (  s  )   # scan from the end to find the longest    # palindromic prefix   for   i   in   range  (  n   -   1     -  1     -  1  ):   if   m  .  check  (  0     i  ):   return   n   -   (  i   +   1  )   return   n   -   1   if   __name__   ==   '__main__'  :   s   =   'aacecaaaa'   print  (  minChar  (  s  ))   
C#
   using     System  ;   class     GfG     {          // manacher's algorithm for finding longest       // palindromic substrings      class     manacher     {      // array to store palindrome lengths centered       // at each position      public     int  []     p  ;      // modified string with separators and sentinels      public     string     ms  ;      public     manacher  (  string     s  )     {      ms     =     '@'  ;      foreach     (  char     c     in     s  )     {      ms     +=     '#'     +     c  ;      }      ms     +=     '#$'  ;      runManacher  ();      }      // core Manacher's algorithm      void     runManacher  ()     {      int     n     =     ms  .  Length  ;      p     =     new     int  [  n  ];      int     l     =     0       r     =     0  ;      for     (  int     i     =     1  ;     i      <     n     -     1  ;     ++  i  )     {      if     (  i      <     r  )      p  [  i  ]     =     Math  .  Min  (  r     -     i       p  [  r     +     l     -     i  ]);      // expand around the current center      while     (  ms  [  i     +     1     +     p  [  i  ]]     ==     ms  [  i     -     1     -     p  [  i  ]])      p  [  i  ]  ++  ;      // update center if palindrome goes beyond       // current right boundary      if     (  i     +     p  [  i  ]     >     r  )     {      l     =     i     -     p  [  i  ];      r     =     i     +     p  [  i  ];      }      }      }      // returns the length of the longest palindrome       // centered at given position      public     int     getLongest  (  int     cen       int     odd  )     {      int     pos     =     2     *     cen     +     2     +     (  odd     ==     0     ?     1     :     0  );      return     p  [  pos  ];      }      // checks whether substring s[l...r] is a palindrome      public     bool     check  (  int     l       int     r  )     {      int     len     =     r     -     l     +     1  ;      int     longest     =     getLongest  ((  l     +     r  )     /     2       len     %     2  );      return     len      <=     longest  ;      }      }      // returns the minimum number of characters to add at the       // front to make the given string a palindrome      static     int     minChar  (  string     s  )     {      int     n     =     s  .  Length  ;      manacher     m     =     new     manacher  (  s  );      // scan from the end to find the longest       // palindromic prefix      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     --  i  )     {      if     (  m  .  check  (  0       i  ))      return     n     -     (  i     +     1  );      }      return     n     -     1  ;      }      static     void     Main  ()     {      string     s     =     'aacecaaaa'  ;      Console  .  WriteLine  (  minChar  (  s  ));      }   }   
JavaScript
   // manacher's algorithm for finding longest    // palindromic substrings   class     manacher     {          // array to store palindrome lengths centered       // at each position      constructor  (  s  )     {      // modified string with separators and sentinels      this  .  ms     =     '@'  ;      for     (  let     c     of     s  )     {      this  .  ms     +=     '#'     +     c  ;      }      this  .  ms     +=     '#$'  ;      this  .  p     =     [];      this  .  runManacher  ();      }      // core Manacher's algorithm      runManacher  ()     {      const     n     =     this  .  ms  .  length  ;      this  .  p     =     new     Array  (  n  ).  fill  (  0  );      let     l     =     0       r     =     0  ;      for     (  let     i     =     1  ;     i      <     n     -     1  ;     ++  i  )     {      if     (  i      <     r  )      this  .  p  [  i  ]     =     Math  .  min  (  r     -     i       this  .  p  [  r     +     l     -     i  ]);      // expand around the current center      while     (  this  .  ms  [  i     +     1     +     this  .  p  [  i  ]]     ===     this  .  ms  [  i     -     1     -     this  .  p  [  i  ]])      this  .  p  [  i  ]  ++  ;      // update center if palindrome goes beyond       // current right boundary      if     (  i     +     this  .  p  [  i  ]     >     r  )     {      l     =     i     -     this  .  p  [  i  ];      r     =     i     +     this  .  p  [  i  ];      }      }      }      // returns the length of the longest palindrome       // centered at given position      getLongest  (  cen       odd  )     {      const     pos     =     2     *     cen     +     2     +     (  odd     ===     0     ?     1     :     0  );      return     this  .  p  [  pos  ];      }      // checks whether substring s[l...r] is a palindrome      check  (  l       r  )     {      const     len     =     r     -     l     +     1  ;      const     longest     =     this  .  getLongest  (  Math  .  floor  ((  l     +     r  )     /     2  )     len     %     2  );      return     len      <=     longest  ;      }   }   // returns the minimum number of characters to add at the    // front to make the given string a palindrome   function     minChar  (  s  )     {      const     n     =     s  .  length  ;      const     m     =     new     manacher  (  s  );      // scan from the end to find the longest       // palindromic prefix      for     (  let     i     =     n     -     1  ;     i     >=     0  ;     --  i  )     {      if     (  m  .  check  (  0       i  ))      return     n     -     (  i     +     1  );      }      return     n     -     1  ;   }   // Driver Code   const     s     =     'aacecaaaa'  ;   console  .  log  (  minChar  (  s  ));   

Produktion
2  

Tidskompleksitet: O(n) manachers algoritme kører i lineær tid ved at udvide palindromer i hvert center uden at gense tegn, og præfikset check loop udfører O(1) operationer pr. tegn over n tegn.
Hjælpeplads: O(n) brugt til den modificerede streng og palindromlængdearrayet p[] som begge vokser lineært med inputstørrelsen.

Opret quiz