Længste efterfølge, sådan at forskellen mellem tilstødende er én

Længste efterfølge, sådan at forskellen mellem tilstødende er én
Prøv det på GfG Practice

Givet et a rray arr[] af størrelse n opgaven er at finde længste efterfølge sådan at absolut forskel mellem tilstødende elementer er 1.

Eksempler: 

Input: arr[] = [10 9 4 5 4 8 6]
Produktion: 3
Forklaring: De tre mulige undersekvenser af længde 3 er [10 9 8] [4 5 4] og [4 5 6], hvor tilstødende elementer har en absolut forskel på 1. Der kunne ikke dannes en gyldig undersekvens af større længde.

Input: arr[] = [1 2 3 4 5]
Produktion: 5
Forklaring: Alle elementerne kan indgå i den gyldige efterfølge.

Brug af rekursion - O(2^n) Tid og O(n) Mellemrum

For rekursiv tilgang vi vil overveje to sager ved hvert trin:

  • Hvis elementet opfylder betingelsen (den absolut forskel mellem tilstødende elementer er 1) vi omfatte det i efterfølgende og gå videre til næste element.
  • ellers vi springe de strøm element og gå videre til det næste.

Matematisk den gentagelsesforhold vil se ud som følgende:

  • longestSubseq(arr idx prev) = max(longestSubseq(arr idx + 1 prev) 1 + longestSubseq(arr idx + 1 idx))

Base Case:

  • Når idx == arr.size() vi har nået slutningen af ​​arrayet så returnere 0 (da der ikke kan medtages flere elementer).
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   #include          using     namespace     std  ;   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -1       arr  );   }   int     main  ()     {      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   import     java.util.ArrayList  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {          take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion.   def   subseq_helper  (  idx     prev     arr  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr  )   # Return the maximum of the two options   return   max  (  take     no_take  )   def   longest_subseq  (  arr  ):   # Start recursion from index 0    # with no previous element   return   subseq_helper  (  0     -  1     arr  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev           List   <  int  >     arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {          take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  Max  (  take       noTake  );      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {      // Start recursion from index 0       // with no previous element      return     SubseqHelper  (  0       -  1       arr  );      }      static     void     Main  (  string  []     args  )     {          List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion.   function     subseqHelper  (  idx       prev       arr  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr  );      }      // Return the maximum of the two options      return     Math  .  max  (  take       noTake  );   }   function     longestSubseq  (  arr  )     {      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Produktion
3 

Brug af Top-Down DP (Memoization ) -  O(n^2)  Tid og  O(n^2)  Plads

Hvis vi lægger mærke til det, kan vi observere, at ovenstående rekursive løsning har følgende to egenskaber af  Dynamisk programmering :

1. Optimal underbygning: Løsningen til at finde den længste efterfølge, sådan at forskel mellem tilstødende elementer kan man udlede af de optimale løsninger af mindre delproblemer. Specifikt for enhver given idx (aktuelt indeks) og forrige (tidligere indeks i efterfølgen) kan vi udtrykke den rekursive relation som følger:

  • subseqHelper(idx prev) = max(subseqHelper(idx + 1 prev) 1 + subseqHelper(idx + 1 idx))

2. Overlappende underproblemer: Ved implementering af en rekursive tilgang til at løse problemet, vi observerer, at mange delproblemer beregnes flere gange. For eksempel ved computere subseqHelper(0 -1) for et array arr = [10 9 4 5] underproblemet subseqHelper(2 -1) kan beregnes flere gange. For at undgå denne gentagelse bruger vi memoization til at gemme resultaterne af tidligere beregnede underproblemer.

Den rekursive løsning involverer to parametre:

  • idx (det aktuelle indeks i arrayet).
  • forrige (indekset for det sidst inkluderede element i efterfølgen).

Vi skal spore begge parametre så vi skaber en 2D array memo af størrelse (n) x (n+1) . Vi initialiserer 2D array memo med -1 for at indikere, at der endnu ikke er beregnet underproblemer. Før vi beregner et resultat, kontrollerer vi, om værdien ved memo[idx][prev+1] er -1. Hvis det er, beregner vi og butik resultatet. Ellers returnerer vi det gemte resultat.

C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   #include          using     namespace     std  ;   // Helper function to recursively find the subsequence   int     subseqHelper  (  int     idx       int     prev       vector   <  int  >&     arr           vector   <  vector   <  int  >>&     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -1     ||     abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      return     memo  [  idx  ][  prev     +     1  ]     =     max  (  take       noTake  );   }   // Function to find the longest subsequence   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      vector   <  vector   <  int  >>     memo  (  n       vector   <  int  >  (  n     +     1       -1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -1       arr       memo  );   }   int     main  ()     {      // Input array of integers      vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   import     java.util.ArrayList  ;   import     java.util.Arrays  ;   class   GfG     {      // Helper function to recursively find the subsequence      static     int     subseqHelper  (  int     idx       int     prev           ArrayList   <  Integer  >     arr           int  [][]     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  size  ())     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Skip the current element and move to the next index      int     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  abs  (  arr  .  get  (  idx  )         -     arr  .  get  (  prev  ))     ==     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memo table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ]  ;      }      // Function to find the longest subsequence      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Create a memoization table initialized to -1      int  [][]     memo     =     new     int  [  n  ][  n     +     1  ]  ;      for     (  int  []     row     :     memo  )     {      Arrays  .  fill  (  row       -  1  );      }      // Start recursion from index 0       // with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );      System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python program to find the longest subsequence such that   # the difference between adjacent elements is one using   # recursion with memoization.   def   subseq_helper  (  idx     prev     arr     memo  ):   # Base case: if index reaches the end of the array   if   idx   ==   len  (  arr  ):   return   0   # Check if the result is already computed   if   memo  [  idx  ][  prev   +   1  ]   !=   -  1  :   return   memo  [  idx  ][  prev   +   1  ]   # Skip the current element and move to the next index   no_take   =   subseq_helper  (  idx   +   1     prev     arr     memo  )   # Take the current element if the condition is met   take   =   0   if   prev   ==   -  1   or   abs  (  arr  [  idx  ]   -   arr  [  prev  ])   ==   1  :   take   =   1   +   subseq_helper  (  idx   +   1     idx     arr     memo  )   # Store the result in the memo table   memo  [  idx  ][  prev   +   1  ]   =   max  (  take     no_take  )   # Return the stored result   return   memo  [  idx  ][  prev   +   1  ]   def   longest_subseq  (  arr  ):   n   =   len  (  arr  )   # Create a memoization table initialized to -1   memo   =   [[  -  1   for   _   in   range  (  n   +   1  )]   for   _   in   range  (  n  )]   # Start recursion from index 0 with    # no previous element   return   subseq_helper  (  0     -  1     arr     memo  )   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longest_subseq  (  arr  ))   
C#
   // C# program to find the longest subsequence such that   // the difference between adjacent elements is one using   // recursion with memoization.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Helper function to recursively find the subsequence      static     int     SubseqHelper  (  int     idx       int     prev        List   <  int  >     arr       int  []     memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ==     arr  .  Count  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx       prev     +     1  ]     !=     -  1  )     {      return     memo  [  idx       prev     +     1  ];      }      // Skip the current element and move to the next index      int     noTake     =     SubseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      int     take     =     0  ;      if     (  prev     ==     -  1     ||     Math  .  Abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ==     1  )     {      take     =     1     +     SubseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx       prev     +     1  ]     =     Math  .  Max  (  take       noTake  );      // Return the stored result      return     memo  [  idx       prev     +     1  ];      }      // Function to find the longest subsequence      static     int     LongestSubseq  (  List   <  int  >     arr  )     {          int     n     =     arr  .  Count  ;          // Create a memoization table initialized to -1      int  []     memo     =     new     int  [  n       n     +     1  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <=     n  ;     j  ++  )     {      memo  [  i       j  ]     =     -  1  ;      }      }      // Start recursion from index 0 with no previous element      return     SubseqHelper  (  0       -  1       arr       memo  );      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  LongestSubseq  (  arr  ));      }   }   
JavaScript
   // JavaScript program to find the longest subsequence    // such that the difference between adjacent elements    // is one using recursion with memoization.   function     subseqHelper  (  idx       prev       arr       memo  )     {      // Base case: if index reaches the end of the array      if     (  idx     ===     arr  .  length  )     {      return     0  ;      }      // Check if the result is already computed      if     (  memo  [  idx  ][  prev     +     1  ]     !==     -  1  )     {      return     memo  [  idx  ][  prev     +     1  ];      }      // Skip the current element and move to the next index      let     noTake     =     subseqHelper  (  idx     +     1       prev       arr       memo  );      // Take the current element if the condition is met      let     take     =     0  ;      if     (  prev     ===     -  1     ||     Math  .  abs  (  arr  [  idx  ]     -     arr  [  prev  ])     ===     1  )     {      take     =     1     +     subseqHelper  (  idx     +     1       idx       arr       memo  );      }      // Store the result in the memoization table      memo  [  idx  ][  prev     +     1  ]     =     Math  .  max  (  take       noTake  );      // Return the stored result      return     memo  [  idx  ][  prev     +     1  ];   }   function     longestSubseq  (  arr  )     {      let     n     =     arr  .  length  ;          // Create a memoization table initialized to -1      let     memo     =      Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n     +     1  ).  fill  (  -  1  ));      // Start recursion from index 0 with no previous element      return     subseqHelper  (  0       -  1       arr       memo  );   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Produktion
3 

Brug af Bottom-Up DP (Tabulering) -   På)  Tid og  På)  Plads

Fremgangsmåden ligner rekursiv metode, men i stedet for at nedbryde problemet rekursivt bygger vi iterativt løsningen i en bottom-up måde.
I stedet for at bruge rekursion bruger vi en hashmap baseret dynamisk programmeringstabel (dp) for at gemme længder af de længste delsekvenser. Dette hjælper os med effektivt at beregne og opdatere efterfølgen længder for alle mulige værdier af array-elementer.

Dynamisk programmeringsrelation:

dp[x] repræsenterer længde af den længste undersekvens, der slutter med elementet x.

For hvert element arr[i] i arrayet: Hvis arr[i] + 1 eller arr[i] - 1 findes i dp:

  • dp[arr[i]] = 1 + max(dp[arr[i] + 1] dp[arr[i] - 1]);

Det betyder, at vi kan forlænge de delsekvenser, der slutter med arr[i] + 1 eller arr[i] - 1 ved inklusive arr[i].

Ellers start en ny efterfølge:

  • dp[arr[i]] = 1;
C++
   // C++ program to find the longest subsequence such that   // the difference between adjacent elements is one using   // Tabulation.   #include          using     namespace     std  ;   int     longestSubseq  (  vector   <  int  >&     arr  )     {          int     n     =     arr  .  size  ();      // Base case: if the array has only       // one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      unordered_map   <  int       int  >     dp  ;      int     ans     =     1  ;      // Loop through the array to fill the map      // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {          // Check if the current element is adjacent      // to another subsequence      if     (  dp  .  count  (  arr  [  i  ]     +     1  )     >     0         ||     dp  .  count  (  arr  [  i  ]     -     1  )     >     0  )     {          dp  [  arr  [  i  ]]     =     1     +         max  (  dp  [  arr  [  i  ]     +     1  ]     dp  [  arr  [  i  ]     -     1  ]);      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }          // Update the result with the maximum      // subsequence length      ans     =     max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {  10       9       4       5       4       8       6  };      cout      < <     longestSubseq  (  arr  );      return     0  ;   }   
Java
   // Java code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   import     java.util.HashMap  ;   import     java.util.ArrayList  ;   class   GfG     {      static     int     longestSubseq  (  ArrayList   <  Integer  >     arr  )     {      int     n     =     arr  .  size  ();      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      HashMap   <  Integer       Integer  >     dp     =     new     HashMap   <>  ();      int     ans     =     1  ;      // Loop through the array to fill the map       // with subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent       // to another subsequence      if     (  dp  .  containsKey  (  arr  .  get  (  i  )     +     1  )         ||     dp  .  containsKey  (  arr  .  get  (  i  )     -     1  ))     {      dp  .  put  (  arr  .  get  (  i  )     1     +         Math  .  max  (  dp  .  getOrDefault  (  arr  .  get  (  i  )     +     1       0  )         dp  .  getOrDefault  (  arr  .  get  (  i  )     -     1       0  )));      }         else     {      dp  .  put  (  arr  .  get  (  i  )     1  );         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  .  get  (  arr  .  get  (  i  )));      }      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      ArrayList   <  Integer  >     arr     =     new     ArrayList   <>  ();      arr  .  add  (  10  );      arr  .  add  (  9  );      arr  .  add  (  4  );      arr  .  add  (  5  );      arr  .  add  (  4  );      arr  .  add  (  8  );      arr  .  add  (  6  );          System  .  out  .  println  (  longestSubseq  (  arr  ));      }   }   
Python
   # Python code to find the longest subsequence such that   # the difference between adjacent elements is    # one using Tabulation.   def   longestSubseq  (  arr  ):   n   =   len  (  arr  )   # Base case: if the array has only one element   if   n   ==   1  :   return   1   # Dictionary to store the length of the    # longest subsequence   dp   =   {}   ans   =   1   for   i   in   range  (  n  ):   # Check if the current element is adjacent to    # another subsequence   if   arr  [  i  ]   +   1   in   dp   or   arr  [  i  ]   -   1   in   dp  :   dp  [  arr  [  i  ]]   =   1   +   max  (  dp  .  get  (  arr  [  i  ]   +   1     0  )    dp  .  get  (  arr  [  i  ]   -   1     0  ))   else  :   dp  [  arr  [  i  ]]   =   1   # Update the result with the maximum   # subsequence length   ans   =   max  (  ans     dp  [  arr  [  i  ]])   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  10     9     4     5     4     8     6  ]   print  (  longestSubseq  (  arr  ))   
C#
   // C# code to find the longest subsequence such that   // the difference between adjacent elements    // is one using Tabulation.   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      static     int     longestSubseq  (  List   <  int  >     arr  )     {      int     n     =     arr  .  Count  ;      // Base case: if the array has only one element      if     (  n     ==     1  )     {      return     1  ;      }      // Map to store the length of the longest subsequence      Dictionary   <  int       int  >     dp     =     new     Dictionary   <  int       int  >  ();      int     ans     =     1  ;      // Loop through the array to fill the map with       // subsequence lengths      for     (  int     i     =     0  ;     i      <     n  ;     ++  i  )     {      // Check if the current element is adjacent to      // another subsequence      if     (  dp  .  ContainsKey  (  arr  [  i  ]     +     1  )     ||     dp  .  ContainsKey  (  arr  [  i  ]     -     1  ))     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  Max  (  dp  .  GetValueOrDefault  (  arr  [  i  ]     +     1       0  )      dp  .  GetValueOrDefault  (  arr  [  i  ]     -     1       0  ));      }         else     {      dp  [  arr  [  i  ]]     =     1  ;         }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  Max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;      }      static     void     Main  (  string  []     args  )     {      List   <  int  >     arr         =     new     List   <  int  >     {     10       9       4       5       4       8       6     };      Console  .  WriteLine  (  longestSubseq  (  arr  ));      }   }   
JavaScript
   // Function to find the longest subsequence such that   // the difference between adjacent elements   // is one using Tabulation.   function     longestSubseq  (  arr  )     {      const     n     =     arr  .  length  ;      // Base case: if the array has only one element      if     (  n     ===     1  )     {      return     1  ;      }      // Object to store the length of the      // longest subsequence      let     dp     =     {};      let     ans     =     1  ;      // Loop through the array to fill the object      // with subsequence lengths      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Check if the current element is adjacent to       // another subsequence      if     ((  arr  [  i  ]     +     1  )     in     dp     ||     (  arr  [  i  ]     -     1  )     in     dp  )     {      dp  [  arr  [  i  ]]     =     1     +     Math  .  max  (  dp  [  arr  [  i  ]     +     1  ]      ||     0       dp  [  arr  [  i  ]     -     1  ]     ||     0  );      }     else     {      dp  [  arr  [  i  ]]     =     1  ;      }      // Update the result with the maximum       // subsequence length      ans     =     Math  .  max  (  ans       dp  [  arr  [  i  ]]);      }      return     ans  ;   }   const     arr     =     [  10       9       4       5       4       8       6  ];   console  .  log  (  longestSubseq  (  arr  ));   

Produktion
3 
Opret quiz