Største Plus eller '+' dannet af alle ener i en binær kvadratisk matrix
Givet en n × n binær matrix sammen med bestående af 0s og 1s . Din opgave er at finde størrelsen på den største '+' form, der kun kan dannes vha 1s .
EN '+' formen består af en centercelle med fire arme, der strækker sig i alle fire retninger ( op ned til venstre og højre ), mens de forbliver inden for matrixgrænserne. Størrelsen af en '+' er defineret som det samlede antal celler danner det inklusive midten og alle arme.
Opgaven er at returnere maksimal størrelse af enhver gyldig '+' i sammen med . Hvis nej '+' kan dannes retur .
Eksempler:
Input: med = [ [0 1 1 0 1] [0 0 1 1 1] [1 1 1 1 1] [1 1 1 0 1] [0 1 1 1 0] ]
Produktion: 9
Forklaring: Et '+' med en armlængde på 2 (2 celler i hver retning + 1 centrum) kan dannes i midten af måtten.
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1
1 1 1 0 1
0 1 1 1 0
Samlet størrelse = (2 × 4) + 1 = 9Input: med = [ [0 1 1] [0 0 1] [1 1 1] ]
Produktion: 1
Forklaring: Et '+' med en armlængde på 0 (0 celler i hver retning + 1 centrum) kan dannes med en hvilken som helst af 1'erne.Input: med = [ [0] ]
Produktion:
Forklaring: Ingen '+'-tegn kan dannes.
[Naiv tilgang] - Betragt hvert punkt som centrum - O(n^4) Tid og O(n^4) Rum
Gå gennem matrixcellerne én efter én. Consider every traversed point as center of a plus and find the size of the +. For hvert element krydser vi venstre højre nede og op. Det værste tilfælde i denne løsning sker, når vi har alle 1'ere.
[Forventet tilgang] - Forberegn 4 arrays - O(n^2) Tid og O(n^2) Rum
De ide er at opretholde fire hjælpematricer venstre[][] højre[][] top[][] bund[][] at gemme på hinanden følgende 1'ere i alle retninger. For hver celle (i j) i inputmatrixen gemmer vi nedenstående oplysninger i disse fire matricer -
- venstre(i j) gemmer det maksimale antal på hinanden følgende 1'ere til venstre af celle (i j) inklusive celle (i j).
- højre (i j) gemmer det maksimale antal på hinanden følgende 1'ere til højre af celle (i j) inklusive celle (i j).
- top(i j) gemmer maksimalt antal på hinanden følgende 1'ere ved top af celle (i j) inklusive celle (i j).
- bund(i j) gemmer maksimalt antal på hinanden følgende 1'ere ved bund af celle (i j) inklusive celle (i j).
Efter beregning af værdi for hver celle i ovenstående matricer største'+' ville være dannet af en celle af inputmatrix, der har maksimal værdi ved at overveje minimum af ( venstre(i j) højre(i j) top(i j) bund(i j) )
Vi kan bruge Dynamisk programmering at beregne den samlede mængde af på hinanden følgende 1'ere i hver retning:
hvis mat(i j) == 1
venstre(i j) = venstre(i j - 1) + 1else left(i j) = 0
hvis mat(i j) == 1
top(i j) = top(i - 1 j) + 1;andet top(i j) = 0;
hvis mat(i j) == 1
bund(i j) = bund(i + 1 j) + 1;ellers bund(i j) = 0;
hvis mat(i j) == 1
højre(i j) = højre(i j + 1) + 1;andet højre(i j) = 0;
Nedenfor er implementeringen af ovenstående tilgang:
C++ // C++ program to find the largest '+' in a binary matrix // using Dynamic Programming #include using namespace std ; int findLargestPlus ( vector < vector < int >> & mat ) { int n = mat . size (); vector < vector < int >> left ( n vector < int > ( n 0 )); vector < vector < int >> right ( n vector < int > ( n 0 )); vector < vector < int >> top ( n vector < int > ( n 0 )); vector < vector < int >> bottom ( n vector < int > ( n 0 )); // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { left [ i ][ j ] = ( j == 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i == 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] == 1 ) { right [ i ][ j ] = ( j == n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { int armLength = min ({ left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]}); maxPlusSize = max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } int main () { // Hardcoded input matrix vector < vector < int >> mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; cout < < findLargestPlus ( mat ) < < endl ; return 0 ; }
Java // Java program to find the largest '+' in a binary matrix // using Dynamic Programming class GfG { static int findLargestPlus ( int [][] mat ) { int n = mat . length ; int [][] left = new int [ n ][ n ] ; int [][] right = new int [ n ][ n ] ; int [][] top = new int [ n ][ n ] ; int [][] bottom = new int [ n ][ n ] ; // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { left [ i ][ j ] = ( j == 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i == 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] == 1 ) { right [ i ][ j ] = ( j == n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] == 1 ) { int armLength = Math . min ( Math . min ( left [ i ][ j ] right [ i ][ j ] ) Math . min ( top [ i ][ j ] bottom [ i ][ j ] )); maxPlusSize = Math . max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } public static void main ( String [] args ) { // Hardcoded input matrix int [][] mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; System . out . println ( findLargestPlus ( mat )); } }
Python # Python program to find the largest '+' in a binary matrix # using Dynamic Programming def findLargestPlus ( mat ): n = len ( mat ) left = [[ 0 ] * n for i in range ( n )] right = [[ 0 ] * n for i in range ( n )] top = [[ 0 ] * n for i in range ( n )] bottom = [[ 0 ] * n for i in range ( n )] # Fill left and top matrices for i in range ( n ): for j in range ( n ): if mat [ i ][ j ] == 1 : left [ i ][ j ] = 1 if j == 0 else left [ i ][ j - 1 ] + 1 top [ i ][ j ] = 1 if i == 0 else top [ i - 1 ][ j ] + 1 # Fill right and bottom matrices for i in range ( n - 1 - 1 - 1 ): for j in range ( n - 1 - 1 - 1 ): if mat [ i ][ j ] == 1 : right [ i ][ j ] = 1 if j == n - 1 else right [ i ][ j + 1 ] + 1 bottom [ i ][ j ] = 1 if i == n - 1 else bottom [ i + 1 ][ j ] + 1 maxPlusSize = 0 # Compute the maximum '+' size for i in range ( n ): for j in range ( n ): if mat [ i ][ j ] == 1 : armLength = min ( left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]) maxPlusSize = max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ) return maxPlusSize if __name__ == '__main__' : # Hardcoded input matrix mat = [ [ 0 1 1 0 1 ] [ 0 0 1 1 1 ] [ 1 1 1 1 1 ] [ 1 1 1 0 1 ] [ 0 1 1 1 0 ] ] print ( findLargestPlus ( mat ))
C# // C# program to find the largest '+' in a binary matrix // using Dynamic Programming using System ; class GfG { static int FindLargestPlus ( int [] mat ) { int n = mat . GetLength ( 0 ); int [] left = new int [ n n ]; int [] right = new int [ n n ]; int [] top = new int [ n n ]; int [] bottom = new int [ n n ]; // Fill left and top matrices for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i j ] == 1 ) { left [ i j ] = ( j == 0 ) ? 1 : left [ i j - 1 ] + 1 ; top [ i j ] = ( i == 0 ) ? 1 : top [ i - 1 j ] + 1 ; } } } // Fill right and bottom matrices for ( int i = n - 1 ; i >= 0 ; i -- ) { for ( int j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i j ] == 1 ) { right [ i j ] = ( j == n - 1 ) ? 1 : right [ i j + 1 ] + 1 ; bottom [ i j ] = ( i == n - 1 ) ? 1 : bottom [ i + 1 j ] + 1 ; } } } int maxPlusSize = 0 ; // Compute the maximum '+' size for ( int i = 0 ; i < n ; i ++ ) { for ( int j = 0 ; j < n ; j ++ ) { if ( mat [ i j ] == 1 ) { int armLength = Math . Min ( Math . Min ( left [ i j ] right [ i j ]) Math . Min ( top [ i j ] bottom [ i j ])); maxPlusSize = Math . Max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } public static void Main () { // Hardcoded input matrix int [] mat = { { 0 1 1 0 1 } { 0 0 1 1 1 } { 1 1 1 1 1 } { 1 1 1 0 1 } { 0 1 1 1 0 } }; Console . WriteLine ( FindLargestPlus ( mat )); } }
JavaScript // JavaScript program to find the largest '+' in a binary matrix // using Dynamic Programming function findLargestPlus ( mat ) { let n = mat . length ; let left = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let right = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let top = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); let bottom = Array . from ({ length : n } () => Array ( n ). fill ( 0 )); // Fill left and top matrices for ( let i = 0 ; i < n ; i ++ ) { for ( let j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] === 1 ) { left [ i ][ j ] = ( j === 0 ) ? 1 : left [ i ][ j - 1 ] + 1 ; top [ i ][ j ] = ( i === 0 ) ? 1 : top [ i - 1 ][ j ] + 1 ; } } } // Fill right and bottom matrices for ( let i = n - 1 ; i >= 0 ; i -- ) { for ( let j = n - 1 ; j >= 0 ; j -- ) { if ( mat [ i ][ j ] === 1 ) { right [ i ][ j ] = ( j === n - 1 ) ? 1 : right [ i ][ j + 1 ] + 1 ; bottom [ i ][ j ] = ( i === n - 1 ) ? 1 : bottom [ i + 1 ][ j ] + 1 ; } } } let maxPlusSize = 0 ; // Compute the maximum '+' size for ( let i = 0 ; i < n ; i ++ ) { for ( let j = 0 ; j < n ; j ++ ) { if ( mat [ i ][ j ] === 1 ) { let armLength = Math . min ( left [ i ][ j ] right [ i ][ j ] top [ i ][ j ] bottom [ i ][ j ]); maxPlusSize = Math . max ( maxPlusSize ( 4 * ( armLength - 1 )) + 1 ); } } } return maxPlusSize ; } // Hardcoded input matrix let mat = [ [ 0 1 1 0 1 ] [ 0 0 1 1 1 ] [ 1 1 1 1 1 ] [ 1 1 1 0 1 ] [ 0 1 1 1 0 ] ]; console . log ( findLargestPlus ( mat ));
Produktion
9
Tidskompleksitet: O(n²) på grund af fire gennemløb for at beregne retningsmatricerne og et sidste gennemløb for at bestemme det største '+'. Hver gang tager O(n²) tid, hvilket fører til en samlet kompleksitet på O(n²).
Rumkompleksitet: O(n²) på grund af fire hjælpematricer (venstre højre øverst nederst), der bruger O(n²) ekstra plads.