Kolik je 10 až 4. mocnina?

Kolik je 10 až 4. mocnina?

V matematice se exponenty a mocniny používají, když se číslo násobí samo sebou určitým počtem časů. Například 4 × 4 × 4 = 64. To lze také napsat ve zkrácené podobě jako 4 3 = 64. Tady, 4 3 znamená, že číslo 4 se samo o sobě násobí třikrát, a zkrácený tvar 4 3 je exponenciální výraz. Číslo 4 je základní číslo, zatímco číslo 3 je exponent a daný exponenciální výraz čteme jako 4 umocněný na 3. V exponenciálním výrazu je základem faktor, který se opakovaně násobí sám sebou, zatímco exponent je počet výskytů faktoru.

Definice exponentů a mocnin

Pokud se číslo násobí samo sebou n krát , výsledný výraz je známý jako n-tá síla daného čísla. Mezi exponentem a mocninou je velmi tenká hranice. Exponent je počet, kolikrát bylo dané číslo vynásobeno samo sebou, zatímco mocnina je hodnota součinu základního čísla zvýšeného na exponent. Pomocí exponenciálního tvaru čísel můžeme pohodlněji vyjádřit extrémně velká a malá čísla. Například 1 000 000 000 lze vyjádřit jako 1 × 10 8 a 0,0000000000013 lze vyjádřit jako 13 × 10 -13 . To usnadňuje čtení čísel, pomáhá udržovat jejich přesnost a také nám šetří čas.

Pravidla exponentů a mocnin

Pravidla exponentů a mocnin vysvětlují, jak sčítat, odčítat, násobit a dělit exponenty a také jak řešit různé druhy matematických rovnic zahrnujících exponenty a mocniny.

Produktový zákon exponentů

A m × a n =a (m+n)

Podílové pravidlo exponentů

A m /A n =a (m-n)

Síla mocenského pravidla

(A m ) n = a mn

Síla produktového pravidla

A m × b m = (ab) m

Síla kvocientového pravidla

A m /b m = (a/b) m

Pravidlo nulového exponentu

A 0 = 1

Pravidlo záporného exponentu

A -m = 1/a m

Pravidlo zlomkového exponentu

A (m/n) = n √a m

Pravidlo 1: Produktový zákon exponentů

Podle tohoto zákona, když se násobí exponenty se stejnými základy, exponenty se sčítají.

Produktový zákon exponentů: a m × a n =a (m+n)

Pravidlo 2: Podílové pravidlo exponentů

Podle tohoto zákona, abychom vydělili dva exponenty se stejnými základy, musíme exponenty odečíst.

Podílové pravidlo exponentů: a m /A n =a (m–n)

Pravidlo 3: Síla mocninného pravidla

Podle tohoto zákona, pokud je exponenciální číslo zvýšeno na jinou mocninu, pak se mocniny násobí.

Mocnina mocninného pravidla: (a m ) n =a (m × n)

Pravidlo 4: Síla pravidla součinu

Podle tohoto zákona musíme vynásobit různé báze a zvýšit stejný exponent na součin bází.

Síla pravidla součinu: a m × b m = (a × b) m .

Pravidlo 5: Síla kvocientového pravidla

Podle tohoto zákona musíme rozdělit různé základy a zvýšit stejný exponent na podíl základen.

Mocnina podílového pravidla: a m ÷ b m =(a/b) m

Pravidlo 6: Pravidlo nulového exponentu

Pokud je podle tohoto zákona hodnota základu umocněna nulou, je 1.

Pravidlo nulového exponentu: a 0 =1

Pravidlo 7: Pravidlo záporného exponentu

Podle tohoto zákona, pokud je exponent záporný, pak se exponent změní na kladný tím, že se vezme převrácená hodnota exponenciálního čísla.

Pravidlo záporného exponentu: a -m = 1/a m

Pravidlo 8: Pravidlo zlomkového exponentu

Podle tohoto zákona, když máme zlomkový exponent, pak to vede k radikálům.

Pravidlo zlomkového exponentu: a (1/n) = n √a

A (m/n) = n √a m

Co znamená 10 na 4?

Řešení:

Vypočítejme hodnotu 10 až 4. střední hodnota, tedy 10 4

Víme, že podle mocenského pravidla exponentů

A m = a × a × a… m krát

Můžeme tedy napsat 10 4 jako 10 × 10 × 10 × 10 = 10 000

Proto,

hodnota 10 umocněna 4, tedy 10 4 je 10 000.

Ukázkové problémy

Úloha 1: Najděte hodnotu 3 6 .

Řešení:

Daný výraz je 3 6 .

Základ daného exponenciálního výrazu je 3, zatímco exponent je 6, tj. daný výraz se čte jako 3 umocněná na 6.

Takže rozšířením 3 6 , dostaneme 3 6 = 3 × 3 × 3 × 3 × 3 × 3 = 729

Proto hodnota 3 6 je 729.

Úloha 2: Určete exponent a mocninu výrazu (12) 5 .

Řešení:

Daný výraz je 12 5 .

Základ daného exponenciálního výrazu je 12, zatímco exponent je 5, tj. daný výraz se čte tak, že 12 je umocněno 5.

Problém 3: Vyhodnoťte (2/7) -5 × (2/7) 7 .

Řešení:

Zadáno: (2/7) -5 ×(2/7) 7

Víme, že a m × a n = a (m + n)

Takže (2/7) -5 ×(2/7) 7 = (2/7) (-5+7)

= (2/7) 2 = 4/49

Proto (2/7) -5 × (2/7) 7 = 4/49

Úloha 4: Najděte hodnotu x v daném výrazu: 5 3x-2 = 625.

Řešení:

Dáno, 5 3x-2 = 625.

5 3x-2 = 5 4

Porovnáním exponentů podobné báze dostaneme

⇒ 3x -2 = 4

⇒ 3x = 4 + 2 = 6

⇒ x = 6/3 = 2

Hodnota x je tedy 2.

Úloha 5: Najděte hodnotu k v daném výrazu: (-2/3) 4 23) -patnáct = (23) 7 tisíc + 3

Řešení:

vzhledem k tomu,

(-23) 4 23) -patnáct = (23) 7 tisíc + 3

23) 4 23) -patnáct = (23) 7 tisíc + 3 {Od (-x) 4 = x 4 }

Víme, že a m × a n = a (m + n)

23) 4-15 = (2/3)7k+3

23) -jedenáct = (23) 7 tisíc + 3

Porovnáním exponentů podobné báze dostaneme

⇒ -11 = 7k +3

⇒ 7k = -11-3 = -14

⇒ k = -14/7 = -2

Hodnota k je tedy -2.