Petersonův algoritmus pro vzájemné vyloučení | Sada 2 (CPU cykly a paměťový plot)

Petersonův algoritmus pro vzájemné vyloučení | Sada 2 (CPU cykly a paměťový plot)

Problém: Vzhledem k 2 procesu I a J musíte napsat program, který může zaručit vzájemné vyloučení mezi nimi bez jakékoli další hardwarové podpory.

Plýtvání cyklům CPU hodin

V laickém pojmu, když vlákno čekalo na řadu, skončilo dlouhou smyčkou, která testovala stav milionykrát za sekundu, čímž se provedl zbytečný výpočet. Existuje lepší způsob, jak čekat a je to známé jako 'výtěžek' .

Abychom pochopili, co to dělá, musíme vykopat hluboko do toho, jak plánovač procesů funguje v Linuxu. Zde uvedená myšlenka je zjednodušená verze plánovače, která má skutečná implementace spoustu komplikací.

Zvažte následující příklad 
Existují tři procesy P1 P2 a P3. Proces P3 je takový, že má chvíli smyčku podobnou té v našem kódu, který není tak užitečný výpočet a existuje ze smyčky pouze tehdy, když P2 dokončí jeho provedení. Plánovač je staví všechny do kulaté fronty Robin. Nyní řekněte, že rychlost hodiny procesoru je 1000000/s a přiděluje na každý proces v každé iteraci 100 hodin. Poté bude první P1 spuštěn po dobu 100 hodin (0,0001 sekundy), pak P2 (0,0001 sekundy) následovaný P3 (0,0001 sekundy) nyní, protože už neexistují žádné další procesy, tento cyklus se opakuje, dokud nekončí P2 a poté následuje provedení P3 a nakonec jeho ukončení.

Toto je úplná plýtvání 100 cyklů hodin CPU. Abychom tomu zabránili, vzájemně se vzdáváme časového řezu CPU, tj. Výnos, který v podstatě končí tento časový řez a plánovač zvedne další proces spustit. Nyní testujeme náš stav jednou, pak se vzdáme CPU. Vzhledem k tomu, že náš test trvá 25 hodinových cyklů, ušetříme 75% našeho výpočtu v časovém řezu. Dát to graficky
 

Petersonův algoritmus pro vzájemné vyloučení | Sada 2 (CPU cykly a paměťový plot)

Vzhledem k rychlosti hodin procesoru jako 1MHz je to hodně úspor!. 
Různé rozdělení poskytují různé funkce k dosažení této funkce. Linux poskytuje SMERN_YIELD () .

C
   void     lock  (  int     self  )   {      flag  [  self  ]     =     1  ;      turn     =     1  -  self  ;      while     (  flag  [  1  -  self  ]     ==     1     &&      turn     ==     1  -  self  )          // Only change is the addition of      // sched_yield() call      sched_yield  ();   }   

Paměťový plot.

Kód v dřívějším tutoriálu mohl pracovat na většině systémů, ale nebyl 100% správný. Logika byla perfektní, ale většina moderních CPU využívá optimalizace výkonu, které mohou vést k provedení mimo řádek. Toto přehodnocení paměťových operací (načítání a obchody) obvykle bez povšimnutí v rámci jediného vlákna provádění však může způsobit nepředvídatelné chování v souběžných programech.
Zvažte tento příklad 

C
      while     (  f     ==     0  );          // Memory fence required here      print     x  ;   

Ve výše uvedeném příkladu kompilátor považuje 2 příkazy za nezávislé na sobě, a proto se snaží zvýšit účinnost kódu jejich zařazením, což může vést k problémům pro souběžné programy. Abychom tomu zabránili, položíme paměťový plot, který kompilátoru náznak o možném vztahu mezi prohlášeními přes bariéru.

Pořadí prohlášení tedy  

vlajka [self] = 1; 
Turn = 1-self; 
while (otočte se kontrolu podmínky) 
výtěžek(); 
 

musí být úplně stejné, aby zámek fungoval, jinak to skončí ve stavu zablokování.

Aby se zajistilo, že tyto kompilátory poskytují instrukci, která zabrání uspořádání prohlášení v této bariéře. V případě GCC __sync_synchronize () .
Takže upravený kód se stává 
Úplná implementace v C:

C++
   // Filename: peterson_yieldlock_memoryfence.cpp   // Use below command to compile:   // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence   #include       #include      #include       std  ::  atomic   <  int  >     flag  [  2  ];   std  ::  atomic   <  int  >     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      std  ::  atomic_thread_fence  (  std  ::  memory_order_seq_cst  );      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      std  ::  this_thread  ::  yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void     func  (  int     s  )   {      int     i     =     0  ;      int     self     =     s  ;      std  ::  cout      < <     'Thread Entered: '      < <     self      < <     std  ::  endl  ;      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         // Initialize the lock       lock_init  ();      // Create two threads (both run func)      std  ::  thread     t1  (  func       0  );      std  ::  thread     t2  (  func       1  );      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      std  ::  cout      < <     'Actual Count: '      < <     ans      < <     ' | Expected Count: '      < <     MAX  *  2      < <     std  ::  endl  ;      return     0  ;   }   
C
   // Filename: peterson_yieldlock_memoryfence.c   // Use below command to compile:   // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence   #include      #include      #include     'mythreads.h'   int     flag  [  2  ];   int     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      __sync_synchronize  ();      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      sched_yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void  *     func  (  void     *  s  )   {      int     i     =     0  ;      int     self     =     (  int     *  )  s  ;      printf  (  'Thread Entered: %d  n  '    self  );      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         pthread_t     p1       p2  ;      // Initialize the lock       lock_init  ();      // Create two threads (both run func)      Pthread_create  (  &  p1       NULL       func       (  void  *  )  0  );      Pthread_create  (  &  p2       NULL       func       (  void  *  )  1  );      // Wait for the threads to end.      Pthread_join  (  p1       NULL  );      Pthread_join  (  p2       NULL  );      printf  (  'Actual Count: %d | Expected Count:'      ' %d  n  '    ans    MAX  *  2  );      return     0  ;   }   
Java
   import     java.util.concurrent.atomic.AtomicInteger  ;   public     class   PetersonYieldLockMemoryFence     {      static     AtomicInteger  []     flag     =     new     AtomicInteger  [  2  ]  ;      static     AtomicInteger     turn     =     new     AtomicInteger  ();      static     final     int     MAX     =     1000000000  ;      static     int     ans     =     0  ;      static     void     lockInit  ()     {      flag  [  0  ]     =     new     AtomicInteger  ();      flag  [  1  ]     =     new     AtomicInteger  ();      flag  [  0  ]  .  set  (  0  );      flag  [  1  ]  .  set  (  0  );      turn  .  set  (  0  );      }      static     void     lock  (  int     self  )     {      flag  [  self  ]  .  set  (  1  );      turn  .  set  (  1     -     self  );      // Memory fence to prevent the reordering of instructions beyond this barrier.      // In Java volatile variables provide this guarantee implicitly.      // No direct equivalent to atomic_thread_fence is needed.      while     (  flag  [  1     -     self  ]  .  get  ()     ==     1     &&     turn  .  get  ()     ==     1     -     self  )      Thread  .  yield  ();      }      static     void     unlock  (  int     self  )     {      flag  [  self  ]  .  set  (  0  );      }      static     void     func  (  int     s  )     {      int     i     =     0  ;      int     self     =     s  ;      System  .  out  .  println  (  'Thread Entered: '     +     self  );      lock  (  self  );      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );      }      public     static     void     main  (  String  []     args  )     {      // Initialize the lock      lockInit  ();      // Create two threads (both run func)      Thread     t1     =     new     Thread  (()     ->     func  (  0  ));      Thread     t2     =     new     Thread  (()     ->     func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      try     {      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      }     catch     (  InterruptedException     e  )     {      e  .  printStackTrace  ();      }      System  .  out  .  println  (  'Actual Count: '     +     ans     +     ' | Expected Count: '     +     MAX     *     2  );      }   }   
Python
   import   threading   flag   =   [  0     0  ]   turn   =   0   MAX   =   10  **  9   ans   =   0   def   lock_init  ():   # This function initializes the lock by resetting the flags and turn.   global   flag     turn   flag   =   [  0     0  ]   turn   =   0   def   lock  (  self  ):   # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread.   global   flag     turn   flag  [  self  ]   =   1   turn   =   1   -   self   while   flag  [  1  -  self  ]   ==   1   and   turn   ==   1  -  self  :   pass   def   unlock  (  self  ):   # This function is executed after leaving the critical section. It resets the flag for the current thread.   global   flag   flag  [  self  ]   =   0   def   func  (  s  ):   # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section.   global   ans   self   =   s   print  (  f  'Thread Entered:   {  self  }  '  )   lock  (  self  )   for   _   in   range  (  MAX  ):   ans   +=   1   unlock  (  self  )   def   main  ():   # This is the main function where the threads are created and started.   lock_init  ()   t1   =   threading  .  Thread  (  target  =  func     args  =  (  0  ))   t2   =   threading  .  Thread  (  target  =  func     args  =  (  1  ))   t1  .  start  ()   t2  .  start  ()   t1  .  join  ()   t2  .  join  ()   print  (  f  'Actual Count:   {  ans  }   | Expected Count:   {  MAX  *  2  }  '  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   class     PetersonYieldLockMemoryFence     {      static     flag     =     [  0       0  ];      static     turn     =     0  ;      static     MAX     =     1000000000  ;      static     ans     =     0  ;      // Function to acquire the lock      static     async     lock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     1  ;      PetersonYieldLockMemoryFence  .  turn     =     1     -     self  ;      // Asynchronous loop with a small delay to yield      while     (  PetersonYieldLockMemoryFence  .  flag  [  1     -     self  ]     ==     1     &&      PetersonYieldLockMemoryFence  .  turn     ==     1     -     self  )     {      await     new     Promise  (  resolve     =>     setTimeout  (  resolve       0  ));      }      }      // Function to release the lock      static     unlock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     0  ;      }      // Function representing the critical section      static     func  (  s  )     {      let     i     =     0  ;      let     self     =     s  ;      console  .  log  (  'Thread Entered: '     +     self  );          // Lock the critical section      PetersonYieldLockMemoryFence  .  lock  (  self  ).  then  (()     =>     {      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     PetersonYieldLockMemoryFence  .  MAX  ;     i  ++  )     {      PetersonYieldLockMemoryFence  .  ans  ++  ;      }          // Release the lock      PetersonYieldLockMemoryFence  .  unlock  (  self  );      });      }      // Main function      static     main  ()     {      // Create two threads (both run func)      const     t1     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  0  ));      const     t2     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      // Wait for the threads to end.      setTimeout  (()     =>     {      console  .  log  (  'Actual Count: '     +     PetersonYieldLockMemoryFence  .  ans     +     ' | Expected Count: '     +     PetersonYieldLockMemoryFence  .  MAX     *     2  );      }     1000  );     // Delay for a while to ensure threads finish      }   }   // Define a simple Thread class for simulation   class     Thread     {      constructor  (  func  )     {      this  .  func     =     func  ;      }      start  ()     {      this  .  func  ();      }   }   // Run the main function   PetersonYieldLockMemoryFence  .  main  ();   
C++
   // mythread.h (A wrapper header file with assert statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include         #include         // Function to lock a pthread mutex   void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was locked successfully   }       // Function to unlock a pthread mutex   void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was unlocked successfully   }       // Function to create a pthread   void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );     // Assert that the thread was created successfully   }   // Function to join a pthread   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );     // Assert that the thread was joined successfully   }   #endif   // __MYTHREADS_h__   
C
   // mythread.h (A wrapper header file with assert   // statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include          #include         void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );   }   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );   }   #endif   // __MYTHREADS_h__   
Python
   import   threading   import   ctypes   # Function to lock a thread lock   def   Thread_lock  (  lock  ):   lock  .  acquire  ()   # Acquire the lock   # No need for assert in Python acquire will raise an exception if it fails   # Function to unlock a thread lock   def   Thread_unlock  (  lock  ):   lock  .  release  ()   # Release the lock   # No need for assert in Python release will raise an exception if it fails   # Function to create a thread   def   Thread_create  (  target     args  =  ()):   thread   =   threading  .  Thread  (  target  =  target     args  =  args  )   thread  .  start  ()   # Start the thread   # No need for assert in Python thread.start() will raise an exception if it fails   # Function to join a thread   def   Thread_join  (  thread  ):   thread  .  join  ()   # Wait for the thread to finish   # No need for assert in Python thread.join() will raise an exception if it fails   

Výstup: 

 Thread Entered: 1   
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000