L’algoritme de Peterson per a l’exclusió mútua | Set 2 (cicles de CPU i tanca de memòria)

L’algoritme de Peterson per a l’exclusió mútua | Set 2 (cicles de CPU i tanca de memòria)

Problema: Tenint en compte el procés I i J, heu d’escriure un programa que pugui garantir l’exclusió mútua entre tots dos sense cap suport de maquinari addicional.

Malbaratament de cicles de rellotge de la CPU

En termes laics quan un fil esperava el seu torn, va acabar en un bucle llarg que va provar la condició de milions de vegades per segon fent càlcul innecessari. Hi ha una manera millor d’esperar i es coneix com a 'Rendiment' .

Per entendre el que fa, hem de aprofundir en el funcionament del planificador de processos a Linux. La idea esmentada aquí és una versió simplificada del planificador La implementació real té moltes complicacions.

Penseu en l'exemple següent 
Hi ha tres processos P1 P2 i P3. El procés P3 és tal que té un bucle similar al del nostre codi que no fa un càlcul tan útil i existeix del bucle només quan P2 acaba la seva execució. El planificador els posa en una cua de Robin rodó. Ara diguem que la velocitat del rellotge del processador és de 1000000/seg i assigna 100 rellotges a cada procés en cada iteració. A continuació, primer P1 s’executarà durant 100 rellotges (0,0001 segons) i després P2 (0,0001 segons) seguit de P3 (0,0001 segons) ara, ja que ja no hi ha més processos que aquest cicle es repeteixi fins que P2 s’acabi i després segueixi l’execució de P3 i, eventualment, la seva finalització.

Es tracta d’un malbaratament complet dels 100 cicles de rellotge de CPU. Per evitar -ho, renunciem mútuament a la llesca de temps de la CPU, és a dir, el rendiment que acaba essencialment aquesta llesca de temps i el planificador recull el següent procés per funcionar. Ara posem a prova la nostra condició una vegada que renunciem a la CPU. Tenint en compte que la nostra prova fa 25 cicles de rellotge, estalviem el 75% del nostre càlcul en una llesca de temps. Per dir -ho gràficament
 

L’algoritme de Peterson per a l’exclusió mútua | Set 2 (cicles de CPU i tanca de memòria)

Tenint en compte la velocitat del rellotge del processador com a 1MHz, això és molt estalvi!. 
Les diferents distribucions proporcionen una funció diferent per aconseguir aquesta funcionalitat. Linux proporciona programació_yield () .

C
   void     lock  (  int     self  )   {      flag  [  self  ]     =     1  ;      turn     =     1  -  self  ;      while     (  flag  [  1  -  self  ]     ==     1     &&      turn     ==     1  -  self  )          // Only change is the addition of      // sched_yield() call      sched_yield  ();   }   

Tanca de memòria.

El codi del tutorial anterior podria haver treballat en la majoria de sistemes, però no era 100% correcte. La lògica era perfecta, però la majoria de les CPU modernes utilitzen optimitzacions de rendiment que poden donar lloc a una execució fora d’ordre. Aquesta reordenació de les operacions de memòria (càrregues i botigues) normalment passa desapercebuda dins d’un sol fil d’execució, però pot causar un comportament imprevisible en programes concurrents.
Considereu aquest exemple 

C
      while     (  f     ==     0  );          // Memory fence required here      print     x  ;   

A l'exemple anterior, el compilador considera les dues declaracions com a independents les unes de les altres i, per tant, intenta augmentar l'eficiència del codi reordenant-les, cosa que pot comportar problemes per a programes concurrents. Per evitar -ho, posem una tanca de memòria per donar suggeriment al compilador sobre la possible relació entre les declaracions a través de la barrera.

Així doncs, l’ordre de les declaracions  

Bandera [self] = 1; 
gir = 1-jo; 
Mentre (comprova la condició de gir) 
rendiment (); 
 

Ha de ser exactament el mateix per tal que el pany funcioni, en cas contrari, acabarà en un punt mort.

Per assegurar -se que els compiladors proporcionen una instrucció que impedeixi la comanda de declaracions a aquesta barrera. En cas de GCC it __sync_synchronize () .
Per tant, el codi modificat es converteix 
Implementació completa a C:

C++
   // Filename: peterson_yieldlock_memoryfence.cpp   // Use below command to compile:   // g++ -pthread peterson_yieldlock_memoryfence.cpp -o peterson_yieldlock_memoryfence   #include       #include      #include       std  ::  atomic   <  int  >     flag  [  2  ];   std  ::  atomic   <  int  >     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      std  ::  atomic_thread_fence  (  std  ::  memory_order_seq_cst  );      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      std  ::  this_thread  ::  yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void     func  (  int     s  )   {      int     i     =     0  ;      int     self     =     s  ;      std  ::  cout      < <     'Thread Entered: '      < <     self      < <     std  ::  endl  ;      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         // Initialize the lock       lock_init  ();      // Create two threads (both run func)      std  ::  thread     t1  (  func       0  );      std  ::  thread     t2  (  func       1  );      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      std  ::  cout      < <     'Actual Count: '      < <     ans      < <     ' | Expected Count: '      < <     MAX  *  2      < <     std  ::  endl  ;      return     0  ;   }   
C
   // Filename: peterson_yieldlock_memoryfence.c   // Use below command to compile:   // gcc -pthread peterson_yieldlock_memoryfence.c -o peterson_yieldlock_memoryfence   #include      #include      #include     'mythreads.h'   int     flag  [  2  ];   int     turn  ;   const     int     MAX     =     1e9  ;   int     ans     =     0  ;   void     lock_init  ()   {      // Initialize lock by resetting the desire of      // both the threads to acquire the locks.      // And giving turn to one of them.      flag  [  0  ]     =     flag  [  1  ]     =     0  ;      turn     =     0  ;   }   // Executed before entering critical section   void     lock  (  int     self  )   {      // Set flag[self] = 1 saying you want      // to acquire lock      flag  [  self  ]  =  1  ;      // But first give the other thread the      // chance to acquire lock      turn     =     1  -  self  ;      // Memory fence to prevent the reordering      // of instructions beyond this barrier.      __sync_synchronize  ();      // Wait until the other thread loses the      // desire to acquire lock or it is your      // turn to get the lock.      while     (  flag  [  1  -  self  ]  ==  1     &&     turn  ==  1  -  self  )      // Yield to avoid wastage of resources.      sched_yield  ();   }   // Executed after leaving critical section   void     unlock  (  int     self  )   {      // You do not desire to acquire lock in future.      // This will allow the other thread to acquire      // the lock.      flag  [  self  ]  =  0  ;   }   // A Sample function run by two threads created   // in main()   void  *     func  (  void     *  s  )   {      int     i     =     0  ;      int     self     =     (  int     *  )  s  ;      printf  (  'Thread Entered: %d  n  '    self  );      lock  (  self  );      // Critical section (Only one thread      // can enter here at a time)      for     (  i  =  0  ;     i   <  MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );   }   // Driver code   int     main  ()   {         pthread_t     p1       p2  ;      // Initialize the lock       lock_init  ();      // Create two threads (both run func)      Pthread_create  (  &  p1       NULL       func       (  void  *  )  0  );      Pthread_create  (  &  p2       NULL       func       (  void  *  )  1  );      // Wait for the threads to end.      Pthread_join  (  p1       NULL  );      Pthread_join  (  p2       NULL  );      printf  (  'Actual Count: %d | Expected Count:'      ' %d  n  '    ans    MAX  *  2  );      return     0  ;   }   
Java
   import     java.util.concurrent.atomic.AtomicInteger  ;   public     class   PetersonYieldLockMemoryFence     {      static     AtomicInteger  []     flag     =     new     AtomicInteger  [  2  ]  ;      static     AtomicInteger     turn     =     new     AtomicInteger  ();      static     final     int     MAX     =     1000000000  ;      static     int     ans     =     0  ;      static     void     lockInit  ()     {      flag  [  0  ]     =     new     AtomicInteger  ();      flag  [  1  ]     =     new     AtomicInteger  ();      flag  [  0  ]  .  set  (  0  );      flag  [  1  ]  .  set  (  0  );      turn  .  set  (  0  );      }      static     void     lock  (  int     self  )     {      flag  [  self  ]  .  set  (  1  );      turn  .  set  (  1     -     self  );      // Memory fence to prevent the reordering of instructions beyond this barrier.      // In Java volatile variables provide this guarantee implicitly.      // No direct equivalent to atomic_thread_fence is needed.      while     (  flag  [  1     -     self  ]  .  get  ()     ==     1     &&     turn  .  get  ()     ==     1     -     self  )      Thread  .  yield  ();      }      static     void     unlock  (  int     self  )     {      flag  [  self  ]  .  set  (  0  );      }      static     void     func  (  int     s  )     {      int     i     =     0  ;      int     self     =     s  ;      System  .  out  .  println  (  'Thread Entered: '     +     self  );      lock  (  self  );      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     MAX  ;     i  ++  )      ans  ++  ;      unlock  (  self  );      }      public     static     void     main  (  String  []     args  )     {      // Initialize the lock      lockInit  ();      // Create two threads (both run func)      Thread     t1     =     new     Thread  (()     ->     func  (  0  ));      Thread     t2     =     new     Thread  (()     ->     func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      try     {      // Wait for the threads to end.      t1  .  join  ();      t2  .  join  ();      }     catch     (  InterruptedException     e  )     {      e  .  printStackTrace  ();      }      System  .  out  .  println  (  'Actual Count: '     +     ans     +     ' | Expected Count: '     +     MAX     *     2  );      }   }   
Python
   import   threading   flag   =   [  0     0  ]   turn   =   0   MAX   =   10  **  9   ans   =   0   def   lock_init  ():   # This function initializes the lock by resetting the flags and turn.   global   flag     turn   flag   =   [  0     0  ]   turn   =   0   def   lock  (  self  ):   # This function is executed before entering the critical section. It sets the flag for the current thread and gives the turn to the other thread.   global   flag     turn   flag  [  self  ]   =   1   turn   =   1   -   self   while   flag  [  1  -  self  ]   ==   1   and   turn   ==   1  -  self  :   pass   def   unlock  (  self  ):   # This function is executed after leaving the critical section. It resets the flag for the current thread.   global   flag   flag  [  self  ]   =   0   def   func  (  s  ):   # This function is executed by each thread. It locks the critical section increments the shared variable and then unlocks the critical section.   global   ans   self   =   s   print  (  f  'Thread Entered:   {  self  }  '  )   lock  (  self  )   for   _   in   range  (  MAX  ):   ans   +=   1   unlock  (  self  )   def   main  ():   # This is the main function where the threads are created and started.   lock_init  ()   t1   =   threading  .  Thread  (  target  =  func     args  =  (  0  ))   t2   =   threading  .  Thread  (  target  =  func     args  =  (  1  ))   t1  .  start  ()   t2  .  start  ()   t1  .  join  ()   t2  .  join  ()   print  (  f  'Actual Count:   {  ans  }   | Expected Count:   {  MAX  *  2  }  '  )   if   __name__   ==   '__main__'  :   main  ()   
JavaScript
   class     PetersonYieldLockMemoryFence     {      static     flag     =     [  0       0  ];      static     turn     =     0  ;      static     MAX     =     1000000000  ;      static     ans     =     0  ;      // Function to acquire the lock      static     async     lock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     1  ;      PetersonYieldLockMemoryFence  .  turn     =     1     -     self  ;      // Asynchronous loop with a small delay to yield      while     (  PetersonYieldLockMemoryFence  .  flag  [  1     -     self  ]     ==     1     &&      PetersonYieldLockMemoryFence  .  turn     ==     1     -     self  )     {      await     new     Promise  (  resolve     =>     setTimeout  (  resolve       0  ));      }      }      // Function to release the lock      static     unlock  (  self  )     {      PetersonYieldLockMemoryFence  .  flag  [  self  ]     =     0  ;      }      // Function representing the critical section      static     func  (  s  )     {      let     i     =     0  ;      let     self     =     s  ;      console  .  log  (  'Thread Entered: '     +     self  );          // Lock the critical section      PetersonYieldLockMemoryFence  .  lock  (  self  ).  then  (()     =>     {      // Critical section (Only one thread can enter here at a time)      for     (  i     =     0  ;     i      <     PetersonYieldLockMemoryFence  .  MAX  ;     i  ++  )     {      PetersonYieldLockMemoryFence  .  ans  ++  ;      }          // Release the lock      PetersonYieldLockMemoryFence  .  unlock  (  self  );      });      }      // Main function      static     main  ()     {      // Create two threads (both run func)      const     t1     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  0  ));      const     t2     =     new     Thread  (()     =>     PetersonYieldLockMemoryFence  .  func  (  1  ));      // Start the threads      t1  .  start  ();      t2  .  start  ();      // Wait for the threads to end.      setTimeout  (()     =>     {      console  .  log  (  'Actual Count: '     +     PetersonYieldLockMemoryFence  .  ans     +     ' | Expected Count: '     +     PetersonYieldLockMemoryFence  .  MAX     *     2  );      }     1000  );     // Delay for a while to ensure threads finish      }   }   // Define a simple Thread class for simulation   class     Thread     {      constructor  (  func  )     {      this  .  func     =     func  ;      }      start  ()     {      this  .  func  ();      }   }   // Run the main function   PetersonYieldLockMemoryFence  .  main  ();   
C++
   // mythread.h (A wrapper header file with assert statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include         #include         // Function to lock a pthread mutex   void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was locked successfully   }       // Function to unlock a pthread mutex   void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );     // Assert that the mutex was unlocked successfully   }       // Function to create a pthread   void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );     // Assert that the thread was created successfully   }   // Function to join a pthread   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );     // Assert that the thread was joined successfully   }   #endif   // __MYTHREADS_h__   
C
   // mythread.h (A wrapper header file with assert   // statements)   #ifndef __MYTHREADS_h__   #define __MYTHREADS_h__   #include         #include          #include         void     Pthread_mutex_lock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_lock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_mutex_unlock  (  pthread_mutex_t     *  m  )   {      int     rc     =     pthread_mutex_unlock  (  m  );      assert  (  rc     ==     0  );   }       void     Pthread_create  (  pthread_t     *  thread       const     pthread_attr_t     *  attr           void     *  (  *  start_routine  )(  void  *  )     void     *  arg  )   {      int     rc     =     pthread_create  (  thread       attr       start_routine       arg  );      assert  (  rc     ==     0  );   }   void     Pthread_join  (  pthread_t     thread       void     **  value_ptr  )   {      int     rc     =     pthread_join  (  thread       value_ptr  );      assert  (  rc     ==     0  );   }   #endif   // __MYTHREADS_h__   
Python
   import   threading   import   ctypes   # Function to lock a thread lock   def   Thread_lock  (  lock  ):   lock  .  acquire  ()   # Acquire the lock   # No need for assert in Python acquire will raise an exception if it fails   # Function to unlock a thread lock   def   Thread_unlock  (  lock  ):   lock  .  release  ()   # Release the lock   # No need for assert in Python release will raise an exception if it fails   # Function to create a thread   def   Thread_create  (  target     args  =  ()):   thread   =   threading  .  Thread  (  target  =  target     args  =  args  )   thread  .  start  ()   # Start the thread   # No need for assert in Python thread.start() will raise an exception if it fails   # Function to join a thread   def   Thread_join  (  thread  ):   thread  .  join  ()   # Wait for the thread to finish   # No need for assert in Python thread.join() will raise an exception if it fails   

Sortida: 

 Thread Entered: 1   
Thread Entered: 0
Actual Count: 2000000000 | Expected Count: 2000000000