Позиция на елемент след стабилно сортиране
#practiceLinkDiv { display: none !important; } Като се има предвид масив от цели числа, който може да съдържа дублиращи се елементи, даден ни е елемент от този масив, ние трябва да кажем крайната позиция на този елемент в масива, ако се прилага стабилен алгоритъм за сортиране.
Примери:
Input : arr[] = [3 4 3 5 2 3 4 3 1 5] index = 5 Output : 4 Element initial index – 5 (third 3) After sorting array by stable sorting algorithm we get array as shown below [1(8) 2(4) 3(0) 3(2) 3(5) 3(7) 4(1) 4(6) 5(3) 5(9)] with their initial indices shown in parentheses next to them Element's index after sorting = 4Recommended Practice Стабилно сортиране и позиция Опитайте!
Един лесен начин за решаване на този проблем е да се използва стабилен алгоритъм за сортиране като Сортиране на вмъкване Сортирането върви и т.н. и след това да получим новия индекс на даден елемент, но можем да решим този проблем, без да сортираме масива.
Тъй като позицията на елемент в сортиран масив се определя само от онези елементи, които са по-малки от дадения елемент. Ние броим всички елементи на масива, по-малки от дадения елемент и за тези елементи, които са равни на даден елемент, елементите, които се срещат преди индекса на даден елемент, ще бъдат включени в броя на по-малките елементи, което ще гарантира стабилността на индекса на резултата.
Прост код за прилагане на горния подход е внедрен по-долу:
C++ // C++ program to get index of array element in // sorted array #include using namespace std ; // Method returns the position of arr[idx] after // performing stable-sort on array int getIndexInSortedArray ( int arr [] int n int idx ) { /* Count of elements smaller than current element plus the equal element occurring before given index*/ int result = 0 ; for ( int i = 0 ; i < n ; i ++ ) { // If element is smaller then increase // the smaller count if ( arr [ i ] < arr [ idx ]) result ++ ; // If element is equal then increase count // only if it occurs before if ( arr [ i ] == arr [ idx ] && i < idx ) result ++ ; } return result ; } // Driver code to test above methods int main () { int arr [] = { 3 4 3 5 2 3 4 3 1 5 }; int n = sizeof ( arr ) / sizeof ( arr [ 0 ]); int idxOfEle = 5 ; cout < < getIndexInSortedArray ( arr n idxOfEle ); return 0 ; }
Java // Java program to get index of array // element in sorted array class ArrayIndex { // Method returns the position of // arr[idx] after performing stable-sort // on array static int getIndexInSortedArray ( int arr [] int n int idx ) { /* Count of elements smaller than current element plus the equal element occurring before given index*/ int result = 0 ; for ( int i = 0 ; i < n ; i ++ ) { // If element is smaller then // increase the smaller count if ( arr [ i ] < arr [ idx ] ) result ++ ; // If element is equal then increase // count only if it occurs before if ( arr [ i ] == arr [ idx ] && i < idx ) result ++ ; } return result ; } // Driver code to test above methods public static void main ( String [] args ) { int arr [] = { 3 4 3 5 2 3 4 3 1 5 }; int n = arr . length ; int idxOfEle = 5 ; System . out . println ( getIndexInSortedArray ( arr n idxOfEle )); } } // This code is contributed by Raghav sharma
Python3 # Python program to get index of array element in # sorted array # Method returns the position of arr[idx] after # performing stable-sort on array def getIndexInSortedArray ( arr n idx ): # Count of elements smaller than current # element plus the equal element occurring # before given index result = 0 for i in range ( n ): # If element is smaller then increase # the smaller count if ( arr [ i ] < arr [ idx ]): result += 1 # If element is equal then increase count # only if it occurs before if ( arr [ i ] == arr [ idx ] and i < idx ): result += 1 return result ; # Driver code to test above methods arr = [ 3 4 3 5 2 3 4 3 1 5 ] n = len ( arr ) idxOfEle = 5 print ( getIndexInSortedArray ( arr n idxOfEle )) # Contributed by: Afzal Ansari
C# // C# program to get index of array // element in sorted array using System ; class ArrayIndex { // Method returns the position of // arr[idx] after performing stable-sort // on array static int getIndexInSortedArray ( int [] arr int n int idx ) { /* Count of elements smaller than current element plus the equal element occurring before given index*/ int result = 0 ; for ( int i = 0 ; i < n ; i ++ ) { // If element is smaller then // increase the smaller count if ( arr [ i ] < arr [ idx ]) result ++ ; // If element is equal then increase // count only if it occurs before if ( arr [ i ] == arr [ idx ] && i < idx ) result ++ ; } return result ; } // Driver code to test above methods public static void Main () { int [] arr = { 3 4 3 5 2 3 4 3 1 5 }; int n = arr . Length ; int idxOfEle = 5 ; Console . WriteLine ( getIndexInSortedArray ( arr n idxOfEle )); } } // This code is contributed by vt_m
PHP // PHP program to get index of // array element in sorted array // Method returns the position of // arr[idx] after performing // stable-sort on array function getIndexInSortedArray ( $arr $n $idx ) { /* Count of elements smaller than current element plus the equal element occurring before given index */ $result = 0 ; for ( $i = 0 ; $i < $n ; $i ++ ) { // If element is smaller then // increase the smaller count if ( $arr [ $i ] < $arr [ $idx ]) $result ++ ; // If element is equal then // increase count only if // it occurs before if ( $arr [ $i ] == $arr [ $idx ] and $i < $idx ) $result ++ ; } return $result ; } // Driver Code $arr = array ( 3 4 3 5 2 3 4 3 1 5 ); $n = count ( $arr ); $idxOfEle = 5 ; echo getIndexInSortedArray ( $arr $n $idxOfEle ); // This code is contributed by anuj_67. ?>
JavaScript < script > // JavaScript program to get index of array // element in sorted array // Method returns the position of // arr[idx] after performing stable-sort // on array function getIndexInSortedArray ( arr n idx ) { /* Count of elements smaller than current element plus the equal element occurring before given index*/ let result = 0 ; for ( let i = 0 ; i < n ; i ++ ) { // If element is smaller then // increase the smaller count if ( arr [ i ] < arr [ idx ]) result ++ ; // If element is equal then increase // count only if it occurs before if ( arr [ i ] == arr [ idx ] && i < idx ) result ++ ; } return result ; } // Driver Code let arr = [ 3 4 3 5 2 3 4 3 1 5 ]; let n = arr . length ; let idxOfEle = 5 ; document . write ( getIndexInSortedArray ( arr n idxOfEle )); // This code is contributed by code_hunt. < /script>
Изход
4
Времева сложност: O(n) където n е размерът на масива.
Помощно пространство: O(1)
Създаване на тест