Минимални стъпки за достигане на цел от рицар | Комплект 2

Минимални стъпки за достигане на цел от рицар | Комплект 2

Дадена е квадратна шахматна дъска с размер N x N, дадена е позицията на коня и позицията на целта. Задачата е да откриете минималните стъпки, които конят ще предприеме, за да достигне целевата позиция.
 

Минимални стъпки за достигане на цел от рицар | Комплект 2


Примери: 
 

Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3 


 


Подход на BFS за решаване на горния проблем вече беше обсъден в предишен пост. В тази публикация се обсъжда решение за динамично програмиране.
Обяснение на подхода:  
 

    Случай 1: Ако целта не е по протежение на един ред или една колона от позицията на коня. 
    Нека шахматна дъска от 8 x 8 клетки. Сега да кажем, че рицарят е на (3 3), а целта е на (7 8). Има възможни 8 хода от текущата позиция на коня, т.е. (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Но сред тези само два хода (5 4) и (4 5) ще бъдат към целта, а всички останали се отдалечават от целта. Така че за намиране на минимални стъпки отидете на (4 5) или (5 4). Сега изчислете минималните стъпки, направени от (4 5) и (5 4), за да достигнете целта. Това се изчислява чрез динамично програмиране. Така това води до минималните стъпки от (3 3) до (7 8). Случай 2: Ако целта е по протежение на един ред или една колона от позицията на коня. 
    Нека шахматна дъска от 8 x 8 клетки. Сега да кажем, че рицарят е на (4 3), а целта е на (4 7). Има възможни 8 хода, но към целта има само 4 хода, т.е. (5 5) (3 5) (2 4) (6 4). Тъй като (5 5) е еквивалентно на (3 5) и (2 4) е еквивалентно на (6 4). Така че от тези 4 точки може да се преобразува в 2 точки. Вземане на (5 5) и (6 4) (тук). Сега изчислете минималните стъпки, направени от тези две точки, за да достигнете целта. Това се изчислява чрез динамично програмиране. Така това води до минималните стъпки от (4 3) до (4 7).


Изключение: Когато рицарят ще бъде в ъгъла и целта е такава, че разликата на координатите x и y с позицията на рицаря е (1 1) или обратното. Тогава минималните стъпки ще бъдат 4.
Уравнение за динамично програмиране: 
 

1) dp[diffOfX][diffOfY] е минималният брой стъпки, направени от позицията на коня до позицията на целта.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
където diffOfX = разликата между х-координатата на коня и х-координатата на целта 
diffOfY = разлика между y-координатата на коня и y-координатата на целта 
 


По-долу е изпълнението на горния подход: 
 

C++
   // C++ code for minimum steps for   // a knight to reach target position   #include          using     namespace     std  ;   // initializing the matrix.   int     dp  [  8  ][  8  ]     =     {     0     };   int     getsteps  (  int     x       int     y           int     tx       int     ty  )   {      // if knight is on the target       // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     !=     0  )      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      int     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).      dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )]     =         min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [  abs  (  y     -     ty  )][  abs  (  x     -     tx  )]     =         dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      return     dp  [  abs  (  x     -     tx  )][  abs  (  y     -     ty  )];      }      }   }   // Driver Code   int     main  ()   {      int     i       n       x       y       tx       ty       ans  ;          // size of chess board n*n      n     =     100  ;          // (x y) coordinate of the knight.      // (tx ty) coordinate of the target position.      x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.      if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||         (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||         (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;      else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||         (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;      else     {      // dp[a][b] here a b is the difference of      // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      cout      < <     ans      < <     endl  ;      return     0  ;   }   
Java
   //Java code for minimum steps for    // a knight to reach target position    public     class   GFG     {   // initializing the matrix.       static     int     dp  [][]     =     new     int  [  8  ][  8  ]  ;      static     int     getsteps  (  int     x       int     y        int     tx       int     ty  )     {      // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {      return     dp  [  0  ][  0  ]  ;      }     else     // if already calculated then return       // that value. Taking absolute difference.       if     (  dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]     !=     0  )     {      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }     else     {      // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;      // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]      =     Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;      // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .  abs  (  y     -     ty  )  ][     Math  .  abs  (  x     -     tx  )  ]      =     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      return     dp  [     Math  .  abs  (  x     -     tx  )  ][     Math  .  abs  (  y     -     ty  )  ]  ;      }      }   // Driver Code       static     public     void     main  (  String  []     args  )     {      int     i       n       x       y       tx       ty       ans  ;      // size of chess board n*n       n     =     100  ;      // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;      y     =     5  ;      tx     =     1  ;      ty     =     1  ;      // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )      ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )      ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )      ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {      ans     =     4  ;      }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )      ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {      ans     =     4  ;      }     else     {      // dp[a][b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );      }      System  .  out  .  println  (  ans  );      }   }   /*This code is contributed by PrinciRaj1992*/   
Python3
   # Python3 code for minimum steps for   # a knight to reach target position   # initializing the matrix.   dp   =   [[  0   for   i   in   range  (  8  )]   for   j   in   range  (  8  )];   def   getsteps  (  x     y     tx     ty  ):   # if knight is on the target   # position return 0.   if   (  x   ==   tx   and   y   ==   ty  ):   return   dp  [  0  ][  0  ];   # if already calculated then return   # that value. Taking absolute difference.   elif  (  dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   !=   0  ):   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   else  :   # there will be two distinct positions   # from the knight towards a target.   # if the target is in same row or column   # as of knight then there can be four   # positions towards the target but in that   # two would be the same and the other two   # would be the same.   x1     y1     x2     y2   =   0     0     0     0  ;   # (x1 y1) and (x2 y2) are two positions.   # these can be different according to situation.   # From position of knight the chess board can be   # divided into four blocks i.e.. N-E E-S S-W W-N .   if   (  x    <=   tx  ):   if   (  y    <=   ty  ):   x1   =   x   +   2  ;   y1   =   y   +   1  ;   x2   =   x   +   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   +   2  ;   y1   =   y   -   1  ;   x2   =   x   +   1  ;   y2   =   y   -   2  ;   elif   (  y    <=   ty  ):   x1   =   x   -   2  ;   y1   =   y   +   1  ;   x2   =   x   -   1  ;   y2   =   y   +   2  ;   else  :   x1   =   x   -   2  ;   y1   =   y   -   1  ;   x2   =   x   -   1  ;   y2   =   y   -   2  ;   # ans will be 1 + minimum of steps   # required from (x1 y1) and (x2 y2).   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )]   =    min  (  getsteps  (  x1     y1     tx     ty  )   getsteps  (  x2     y2     tx     ty  ))   +   1  ;   # exchanging the coordinates x with y of both   # knight and target will result in same ans.   dp  [  abs  (  y   -   ty  )][  abs  (  x   -   tx  )]   =    dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   return   dp  [  abs  (  x   -   tx  )][  abs  (  y   -   ty  )];   # Driver Code   if   __name__   ==   '__main__'  :   # size of chess board n*n   n   =   100  ;   # (x y) coordinate of the knight.   # (tx ty) coordinate of the target position.   x   =   4  ;   y   =   5  ;   tx   =   1  ;   ty   =   1  ;   # (Exception) these are the four corner points   # for which the minimum steps is 4.   if   ((  x   ==   1   and   y   ==   1   and   tx   ==   2   and   ty   ==   2  )   or   (  x   ==   2   and   y   ==   2   and   tx   ==   1   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   1   and   y   ==   n   and   tx   ==   2   and   ty   ==   n   -   1  )   or   (  x   ==   2   and   y   ==   n   -   1   and   tx   ==   1   and   ty   ==   n  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   1   and   tx   ==   n   -   1   and   ty   ==   2  )   or   (  x   ==   n   -   1   and   y   ==   2   and   tx   ==   n   and   ty   ==   1  )):   ans   =   4  ;   elif   ((  x   ==   n   and   y   ==   n   and   tx   ==   n   -   1   and   ty   ==   n   -   1  )   or   (  x   ==   n   -   1   and   y   ==   n   -   1   and   tx   ==   n   and   ty   ==   n  )):   ans   =   4  ;   else  :   # dp[a][b] here a b is the difference of   # x & tx and y & ty respectively.   dp  [  1  ][  0  ]   =   3  ;   dp  [  0  ][  1  ]   =   3  ;   dp  [  1  ][  1  ]   =   2  ;   dp  [  2  ][  0  ]   =   2  ;   dp  [  0  ][  2  ]   =   2  ;   dp  [  2  ][  1  ]   =   1  ;   dp  [  1  ][  2  ]   =   1  ;   ans   =   getsteps  (  x     y     tx     ty  );   print  (  ans  );   # This code is contributed by PrinciRaj1992   
C#
   // C# code for minimum steps for    // a knight to reach target position    using     System  ;   public     class     GFG  {   // initializing the matrix.       static     int     [          ]  dp     =     new     int  [  8          8  ];         static     int     getsteps  (  int     x       int     y           int     tx       int     ty  )     {         // if knight is on the target       // position return 0.       if     (  x     ==     tx     &&     y     ==     ty  )     {         return     dp  [  0          0  ];         }     else     // if already calculated then return       // that value. Taking Absolute difference.       if     (  dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]     !=     0  )     {         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }     else     {         // there will be two distinct positions       // from the knight towards a target.       // if the target is in same row or column       // as of knight then there can be four       // positions towards the target but in that       // two would be the same and the other two       // would be the same.       int     x1       y1       x2       y2  ;         // (x1 y1) and (x2 y2) are two positions.       // these can be different according to situation.       // From position of knight the chess board can be       // divided into four blocks i.e.. N-E E-S S-W W-N .       if     (  x      <=     tx  )     {         if     (  y      <=     ty  )     {         x1     =     x     +     2  ;         y1     =     y     +     1  ;         x2     =     x     +     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     +     2  ;         y1     =     y     -     1  ;         x2     =     x     +     1  ;         y2     =     y     -     2  ;         }         }     else     if     (  y      <=     ty  )     {         x1     =     x     -     2  ;         y1     =     y     +     1  ;         x2     =     x     -     1  ;         y2     =     y     +     2  ;         }     else     {         x1     =     x     -     2  ;         y1     =     y     -     1  ;         x2     =     x     -     1  ;         y2     =     y     -     2  ;         }         // ans will be 1 + minimum of steps       // required from (x1 y1) and (x2 y2).       dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )]         =     Math  .  Min  (  getsteps  (  x1       y1       tx       ty  )         getsteps  (  x2       y2       tx       ty  ))     +     1  ;         // exchanging the coordinates x with y of both       // knight and target will result in same ans.       dp  [     Math  .     Abs  (  y     -     ty  )          Math  .     Abs  (  x     -     tx  )]         =     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         return     dp  [     Math  .     Abs  (  x     -     tx  )          Math  .     Abs  (  y     -     ty  )];         }         }      // Driver Code       static     public     void     Main  ()     {         int     i       n       x       y       tx       ty       ans  ;         // size of chess board n*n       n     =     100  ;         // (x y) coordinate of the knight.       // (tx ty) coordinate of the target position.       x     =     4  ;         y     =     5  ;         tx     =     1  ;         ty     =     1  ;         // (Exception) these are the four corner points       // for which the minimum steps is 4.       if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )         ||     (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )         ||     (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )         ||     (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))     {         ans     =     4  ;         }     else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )         ||     (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))     {         ans     =     4  ;         }     else     {         // dp[a  b] here a b is the difference of       // x & tx and y & ty respectively.       dp  [  1          0  ]     =     3  ;         dp  [  0          1  ]     =     3  ;         dp  [  1          1  ]     =     2  ;         dp  [  2          0  ]     =     2  ;         dp  [  0          2  ]     =     2  ;         dp  [  2          1  ]     =     1  ;         dp  [  1          2  ]     =     1  ;         ans     =     getsteps  (  x       y       tx       ty  );         }         Console  .  WriteLine  (  ans  );         }      }      /*This code is contributed by PrinciRaj1992*/   
JavaScript
    <  script  >   // JavaScript code for minimum steps for   // a knight to reach target position   // initializing the matrix.   let     dp     =     new     Array  (  8  )   for  (  let     i  =  0  ;  i   <  8  ;  i  ++  ){      dp  [  i  ]     =     new     Array  (  8  ).  fill  (  0  )   }   function     getsteps  (  x    y    tx    ty  )   {      // if knight is on the target      // position return 0.      if     (  x     ==     tx     &&     y     ==     ty  )      return     dp  [  0  ][  0  ];      else     {          // if already calculated then return      // that value. Taking absolute difference.      if     (  dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     !=     0  )      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];          else     {      // there will be two distinct positions      // from the knight towards a target.      // if the target is in same row or column      // as of knight then there can be four      // positions towards the target but in that      // two would be the same and the other two      // would be the same.      let     x1       y1       x2       y2  ;          // (x1 y1) and (x2 y2) are two positions.      // these can be different according to situation.      // From position of knight the chess board can be      // divided into four blocks i.e.. N-E E-S S-W W-N .      if     (  x      <=     tx  )     {      if     (  y      <=     ty  )     {      x1     =     x     +     2  ;      y1     =     y     +     1  ;      x2     =     x     +     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     +     2  ;      y1     =     y     -     1  ;      x2     =     x     +     1  ;      y2     =     y     -     2  ;      }      }     else     {      if     (  y      <=     ty  )     {      x1     =     x     -     2  ;      y1     =     y     +     1  ;      x2     =     x     -     1  ;      y2     =     y     +     2  ;      }     else     {      x1     =     x     -     2  ;      y1     =     y     -     1  ;      x2     =     x     -     1  ;      y2     =     y     -     2  ;      }      }          // ans will be 1 + minimum of steps      // required from (x1 y1) and (x2 y2).      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))]     =      Math  .  min  (  getsteps  (  x1       y1       tx       ty  )      getsteps  (  x2       y2       tx       ty  ))     +     1  ;          // exchanging the coordinates x with y of both      // knight and target will result in same ans.      dp  [(  Math  .  abs  (  y     -     ty  ))][(  Math  .  abs  (  x     -     tx  ))]     =      dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      return     dp  [(  Math  .  abs  (  x     -     tx  ))][(  Math  .  abs  (  y     -     ty  ))];      }      }   }   // Driver Code   let     i       n       x       y       tx       ty       ans  ;   // size of chess board n*n   n     =     100  ;   // (x y) coordinate of the knight.   // (tx ty) coordinate of the target position.   x     =     4  ;   y     =     5  ;   tx     =     1  ;   ty     =     1  ;   // (Exception) these are the four corner points   // for which the minimum steps is 4.   if     ((  x     ==     1     &&     y     ==     1     &&     tx     ==     2     &&     ty     ==     2  )     ||   (  x     ==     2     &&     y     ==     2     &&     tx     ==     1     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     1     &&     y     ==     n     &&     tx     ==     2     &&     ty     ==     n     -     1  )     ||      (  x     ==     2     &&     y     ==     n     -     1     &&     tx     ==     1     &&     ty     ==     n  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     1     &&     tx     ==     n     -     1     &&     ty     ==     2  )     ||      (  x     ==     n     -     1     &&     y     ==     2     &&     tx     ==     n     &&     ty     ==     1  ))      ans     =     4  ;   else     if     ((  x     ==     n     &&     y     ==     n     &&     tx     ==     n     -     1     &&     ty     ==     n     -     1  )     ||      (  x     ==     n     -     1     &&     y     ==     n     -     1     &&     tx     ==     n     &&     ty     ==     n  ))      ans     =     4  ;   else      {   // dp[a][b] here a b is the difference of   // x & tx and y & ty respectively.      dp  [  1  ][  0  ]     =     3  ;      dp  [  0  ][  1  ]     =     3  ;      dp  [  1  ][  1  ]     =     2  ;      dp  [  2  ][  0  ]     =     2  ;      dp  [  0  ][  2  ]     =     2  ;      dp  [  2  ][  1  ]     =     1  ;      dp  [  1  ][  2  ]     =     1  ;      ans     =     getsteps  (  x       y       tx       ty  );   }   document  .  write  (  ans    ' 
'
); // This code is contributed by shinjanpatra. < /script>

Изход:  
3 

 

Времева сложност: O(N * M), където N е общият брой редове, а M е общият брой колони
Помощно пространство: O(N * M) 

Създаване на тест