Четна сума на числата на Фибоначи

Четна сума на числата на Фибоначи
Опитайте в GfG Practice #practiceLinkDiv { display: none !important; }

При дадено ограничение намерете сумата от всички членове с четни стойности в редицата на Фибоначи под даденото ограничение.
Първите няколко термина на Числата на Фибоначи са 11 2 3 5 8 13 21 34 55 89 144 233 ... (Четните числа са осветени).
Примери:  
 

Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188. 


 

Препоръчителна практика Четна сума на числата на Фибоначи Опитайте!


Просто решение е да преминете през всички числа на Фибоначи, докато следващото число е по-малко или равно на дадения лимит. За всяко число проверете дали е четно. Ако числото е четно, добавете го към резултата.
Едно ефективно решение се основава на следното рекурсивна формула за четни числа на Фибоначи
 

Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2.   EFn   represents n'th term in Even Fibonacci sequence. 


Реф това повече подробности за горната формула.
Така че докато итерираме числата на Фибоначи, ние генерираме само четни числа на Фибоначи. 
 

C++
   // Find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.   #include       using     namespace     std  ;   // Returns sum of even Fibonacci numbers which are   // less than or equal to given limit.   int     evenFibSum  (  int     limit  )   {      if     (  limit      <     2  )      return     0  ;      // Initialize first two even Fibonacci numbers      // and their sum      long     long     int     ef1     =     0       ef2     =     2  ;      long     long     int     sum     =     ef1     +     ef2  ;      // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      long     long     int     ef3     =     4  *  ef2     +     ef1  ;      // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;      // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }      return     sum  ;   }   // Driver code   int     main  ()   {      int     limit     =     400  ;      cout      < <     evenFibSum  (  limit  );      return     0  ;   }   
Java
   // Find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.   import     java.io.*  ;   class   GFG      {      // Returns sum of even Fibonacci numbers which are      // less than or equal to given limit.      static     int     evenFibSum  (  int     limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even Fibonacci numbers      // and their sum      long     ef1     =     0       ef2     =     2  ;      long     sum     =     ef1     +     ef2  ;          // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      long     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return  (  int  )     sum  ;      }          // Driver code      public     static     void     main     (  String  []     args  )         {      int     limit     =     400  ;      System  .  out  .  println  (  evenFibSum  (  limit  ));          }   }   // This code is contributed by vt_m.   
Python3
   # Find the sum of all the even-valued    # terms in the Fibonacci sequence which    # do not exceed given limit.   # Returns sum of even Fibonacci numbers which   # are less than or equal to given limit.   def   evenFibSum  (  limit  )   :   if   (  limit    <   2  )   :   return   0   # Initialize first two even Fibonacci numbers   # and their sum   ef1   =   0   ef2   =   2   sm  =   ef1   +   ef2   # calculating sum of even Fibonacci value   while   (  ef2    <=   limit  )   :   # get next even value of Fibonacci    # sequence   ef3   =   4   *   ef2   +   ef1   # If we go beyond limit we break loop   if   (  ef3   >   limit  )   :   break   # Move to next even number and update   # sum   ef1   =   ef2   ef2   =   ef3   sm   =   sm   +   ef2   return   sm   # Driver code   limit   =   400   print  (  evenFibSum  (  limit  ))   # This code is contributed by Nikita Tiwari.   
C#
   // C# program to Find the sum of all   // the even-valued terms in the    // Fibonacci sequence which do not   // exceed given limit.given limit.   using     System  ;   class     GFG     {          // Returns sum of even Fibonacci       // numbers which are less than or      // equal to given limit.      static     int     evenFibSum  (  int     limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even      // Fibonacci numbers and their sum      long     ef1     =     0       ef2     =     2  ;      long     sum     =     ef1     +     ef2  ;          // calculating sum of even       // Fibonacci value      while     (  ef2      <=     limit  )      {          // get next even value of       // Fibonacci sequence      long     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit      // we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number      // and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return  (  int  )     sum  ;      }          // Driver code      public     static     void     Main     ()         {      int     limit     =     400  ;      Console  .  Write  (  evenFibSum  (  limit  ));          }   }   // This code is contributed by Nitin Mittal.   
PHP
      // Find the sum of all the    // even-valued terms in the    // Fibonacci sequence which    // do not exceed given limit.   // Returns sum of even Fibonacci   // numbers which are less than or    // equal to given limit.   function   evenFibSum  (  $limit  )   {   if   (  $limit    <   2  )   return   0  ;   // Initialize first two even    // Fibonacci numbers and their sum   $ef1   =   0  ;   $ef2   =   2  ;   $sum   =   $ef1   +   $ef2  ;   // calculating sum of   // even Fibonacci value   while   (  $ef2    <=   $limit  )   {   // get next even value of   // Fibonacci sequence   $ef3   =   4   *   $ef2   +   $ef1  ;   // If we go beyond limit   // we break loop   if   (  $ef3   >   $limit  )   break  ;   // Move to next even number   // and update sum   $ef1   =   $ef2  ;   $ef2   =   $ef3  ;   $sum   +=   $ef2  ;   }   return   $sum  ;   }   // Driver code   $limit   =   400  ;   echo  (  evenFibSum  (  $limit  ));   // This code is contributed by Ajit.   ?>   
JavaScript
    <  script  >   // Javascript program to find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.      // Returns sum of even Fibonacci numbers which are      // less than or equal to given limit.      function     evenFibSum  (  limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even Fibonacci numbers      // and their sum      let     ef1     =     0       ef2     =     2  ;      let     sum     =     ef1     +     ef2  ;          // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      let     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return     sum  ;      }       // Function call          let     limit     =     400  ;      document  .  write  (  evenFibSum  (  limit  ));        <  /script>   

Изход:  
 

188 

Времева сложност: O(n)

Помощно пространство: О(1)


 

Създаване на тест