İkili bir matristeki tüm sıfırların toplam kapsamı

İkili bir matristeki tüm sıfırların toplam kapsamı
GfG Practice'de deneyin #practiceLinkDiv { görüntü: yok !önemli; }

Yalnızca 0'lar ve 1'ler içeren bir ikili matris verildiğinde, matrisin tüm sıfırlarının kapsamının toplamını bulmamız gerekir; burada belirli bir 0'ın kapsamı, sol sağ yukarı ve aşağı yönlerde sıfır etrafındaki birlerin toplam sayısı olarak tanımlanır. Bunlar bir yönde köşe noktasına kadar herhangi bir yerde olabilir. 

Örnekler:  

Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8 
Recommended Practice İkili Matristeki Tüm Sıfırların Kapsamı Deneyin!

A basit çözüm Bu sorunu çözmek için sıfırların etrafındakileri bağımsız olarak saymak gerekir; yani verilen matris için her hücre için döngüyü her yönde dört kez çalıştırırız. Herhangi bir döngüde 1 sayısını bulduğumuzda döngüyü keser ve sonucu 1 artırırız.

Bir verimli çözüm aşağıdakileri yapmaktır. 

  1. Zaten bir 1 görülüyorsa (geçerli geçişte) ve geçerli öğe 0 ise, tüm satırları soldan sağa artış sonucu ilerleyin.
  2. Zaten bir 1 görülüyorsa (geçerli geçişte) ve geçerli öğe 0 ise, tüm satırları sağdan sola artış sonucu ilerleyin.
  3. Zaten bir 1 görülüyorsa (geçerli geçişte) ve geçerli öğe 0 ise, tüm sütunları yukarıdan aşağıya artış sonucu ilerleyin.
  4. Zaten bir 1 görülüyorsa (geçerli geçişte) ve geçerli öğe 0 ise, tüm sütunları aşağıdan yukarıya doğru artırın.

Aşağıdaki kodda, tüm sıfırlar için mevcut geçişte bir ile karşılaşıldığında doğru olan bir Boolean değişkeni olan isOne alınır, ardından yineleme sonucu bir artırılır ve son cevabı almak için dört yönde de aynı prosedür uygulanır. Her geçişten sonra isOne'ı false olarak sıfırlarız.

C++
   // C++ program to get total coverage of all zeros in   // a binary matrix   #include          using     namespace     std  ;   #define R 4   #define C 4   // Returns total coverage of all zeros in mat[][]   int     getTotalCoverageOfMatrix  (  int     mat  [  R  ][  C  ])   {      int     res     =     0  ;      // looping for all rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      bool     isOne     =     false  ;     // 1 is not seen yet      // looping in columns from left to right      // direction to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we have found      // a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above process for right to      // left direction.      isOne     =     false  ;      for     (  int     j     =     C  -1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns for up and down      // directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      bool     isOne     =     false  ;     // 1 is not seen yet      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R  -1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code to test above methods   int     main  ()   {      int     mat  [  R  ][  C  ]     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }      };      cout      < <     getTotalCoverageOfMatrix  (  mat  );      return     0  ;   }   
Java
   // Java program to get total    // coverage of all zeros in    // a binary matrix   import     java     .  io  .  *  ;   class   GFG      {   static     int     R     =     4  ;   static     int     C     =     4  ;   // Returns total coverage   // of all zeros in mat[][]   static     int     getTotalCoverageOfMatrix  (  int     [][]  mat  )   {      int     res     =     0  ;      // looping for all       // rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      boolean     isOne     =     false  ;         // looping in columns from       // left to right direction      // to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found      // from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above       // process for right       // to left direction.      isOne     =     false  ;      for     (  int     j     =     C     -     1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      boolean     isOne     =     false  ;         for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R     -     1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code    static     public     void     main     (  String  []     args  )   {      int     [][]  mat     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }};   System  .  out  .  println  (      getTotalCoverageOfMatrix  (  mat  ));   }   }   // This code is contributed by anuj_67.   
Python3
   # Python3 program to get total coverage of all zeros in   # a binary matrix   R   =   4   C   =   4   # Returns total coverage of all zeros in mat[][]   def   getTotalCoverageOfMatrix  (  mat  ):   res   =   0   # looping for all rows of matrix   for   i   in   range  (  R  ):   isOne   =   False   # 1 is not seen yet   # looping in columns from left to right   # direction to get left ones   for   j   in   range  (  C  ):   # If one is found from left   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   # If 0 is found and we have found   # a 1 before.   else   if   (  isOne  ):   res   +=   1   # Repeat the above process for right to   # left direction.   isOne   =   False   for   j   in   range  (  C   -   1     -  1     -  1  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   # Traversing across columns for up and down   # directions.   for   j   in   range  (  C  ):   isOne   =   False   # 1 is not seen yet   for   i   in   range  (  R  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   isOne   =   False   for   i   in   range  (  R   -   1     -  1     -  1  ):   if   (  mat  [  i  ][  j  ]   ==   1  ):   isOne   =   True   else   if   (  isOne  ):   res   +=   1   return   res   # Driver code   mat   =   [[  0     0     0     0  ][  1     0     0     1  ][  0     1     1     0  ][  0     1     0     0  ]]   print  (  getTotalCoverageOfMatrix  (  mat  ))   # This code is contributed by shubhamsingh10   
C#
   // C# program to get total coverage    // of all zeros in a binary matrix   using     System  ;   class     GFG     {       static     int     R     =     4  ;   static     int     C     =     4  ;   // Returns total coverage of all zeros in mat[][]   static     int     getTotalCoverageOfMatrix  (  int     []  mat  )   {      int     res     =     0  ;      // looping for all rows of matrix      for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      bool     isOne     =     false  ;         // looping in columns from left to       // right direction to get left ones      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found from left      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above process for       // right to left direction.      isOne     =     false  ;      for     (  int     j     =     C  -  1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  int     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      bool     isOne     =     false  ;         for     (  int     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  int     i     =     R  -  1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i    j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;   }   // Driver code to test above methods      static     public     void     Main     ()      {      int     []  mat     =     {{  0       0       0       0  }      {  1       0       0       1  }      {  0       1       1       0  }      {  0       1       0       0  }};      Console  .  WriteLine  (  getTotalCoverageOfMatrix  (  mat  ));      }   }   // This code is contributed by vt_m.   
JavaScript
    <  script  >      // Javascript program to get total       // coverage of all zeros in       // a binary matrix          let     R     =     4  ;      let     C     =     4  ;      // Returns total coverage      // of all zeros in mat[][]      function     getTotalCoverageOfMatrix  (  mat  )      {      let     res     =     0  ;      // looping for all       // rows of matrix      for     (  let     i     =     0  ;     i      <     R  ;     i  ++  )      {      // 1 is not seen yet      let     isOne     =     false  ;         // looping in columns from       // left to right direction      // to get left ones      for     (  let     j     =     0  ;     j      <     C  ;     j  ++  )      {      // If one is found      // from left      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      // If 0 is found and we       // have found a 1 before.      else     if     (  isOne  )      res  ++  ;      }      // Repeat the above       // process for right       // to left direction.      isOne     =     false  ;      for     (  let     j     =     C     -     1  ;     j     >=     0  ;     j  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      // Traversing across columns      // for up and down directions.      for     (  let     j     =     0  ;     j      <     C  ;     j  ++  )      {      // 1 is not seen yet      let     isOne     =     false  ;         for     (  let     i     =     0  ;     i      <     R  ;     i  ++  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      isOne     =     false  ;      for     (  let     i     =     R     -     1  ;     i     >=     0  ;     i  --  )      {      if     (  mat  [  i  ][  j  ]     ==     1  )      isOne     =     true  ;      else     if     (  isOne  )      res  ++  ;      }      }      return     res  ;      }          let     mat     =     [[  0       0       0       0  ]      [  1       0       0       1  ]      [  0       1       1       0  ]      [  0       1       0       0  ]];          document  .  write  (  getTotalCoverageOfMatrix  (  mat  ));    <  /script>   

Çıkış
20 

Zaman Karmaşıklığı: O(n 2
Yardımcı Alan: O(1)

 

Test Oluştur