İkili Ağacın her düzeyinin uç noktadaki düğümlerini alternatif sırayla yazdırın

İkili Ağacın her düzeyinin uç noktadaki düğümlerini alternatif sırayla yazdırın
GfG Practice'de deneyin İkili Ağacın her düzeyinin uç noktadaki düğümlerini alternatif sırayla yazdırın #practiceLinkDiv { görüntü: yok !önemli; }

Her düzeyin en uç köşelerinin ikili ağaç baskı düğümleri verilmiştir ancak alternatif sıradadır.
Örnek: 
 

For above tree the output can be   1 2 7 8 31    - print rightmost node of 1st level  - print leftmost node of 2nd level  - print rightmost node of 3rd level  - print leftmost node of 4th level  - print rightmost node of 5th level OR   1 3 4 15 16    - print leftmost node of 1st level  - print rightmost node of 2nd level  - print leftmost node of 3rd level  - print rightmost node of 4th level  - print leftmost node of 5th level 
Recommended Practice Alternatif sırayla aşırı düğümler Deneyin!

Buradaki fikir, ağacı seviye seviye geçmektir. Her seviye için, içindeki düğümlerin sayısını sayarız ve Boole bayrağının değerine göre en soldaki veya en sağdaki düğümü yazdırırız. Mevcut seviyedeki tüm düğümleri kuyruğa alırız ve sonraki seviyedeki tüm düğümleri kuyruğa alırız ve seviyeleri değiştirirken Boole bayrağının değerini tersine çeviririz.



Aşağıda yukarıdaki fikrin uygulanması yer almaktadır - 

C++
   /* C++ program to print nodes of extreme corners   of each level in alternate order */   #include          using     namespace     std  ;   /* A binary tree node has data pointer to left child   and a pointer to right child */   struct     Node   {      int     data  ;      Node     *  left       *  right  ;   };   /* Helper function that allocates a new node with the   given data and NULL left and right pointers. */   Node  *     newNode  (  int     data  )   {      Node  *     node     =     new     Node  ;      node  ->  data     =     data  ;      node  ->  right     =     node  ->  left     =     NULL  ;      return     node  ;   }   /* Function to print nodes of extreme corners   of each level in alternate order */   void     printExtremeNodes  (  Node  *     root  )   {      if     (  root     ==     NULL  )      return  ;      // Create a queue and enqueue left and right      // children of root      queue   <  Node  *>     q  ;      q  .  push  (  root  );      // flag to indicate whether leftmost node or      // the rightmost node has to be printed      bool     flag     =     false  ;      while     (  !  q  .  empty  ())      {      // nodeCount indicates number of nodes      // at current level.      int     nodeCount     =     q  .  size  ();      int     n     =     nodeCount  ;      // Dequeue all nodes of current level      // and Enqueue all nodes of next level      while     (  n  --  )      {      Node  *     curr     =     q  .  front  ();      // Enqueue left child      if     (  curr  ->  left  )      q  .  push  (  curr  ->  left  );      // Enqueue right child      if     (  curr  ->  right  )      q  .  push  (  curr  ->  right  );      // Dequeue node      q  .  pop  ();      // if flag is true print leftmost node      if     (  flag     &&     n     ==     nodeCount     -     1  )      cout      < <     curr  ->  data      < <     ' '  ;      // if flag is false print rightmost node      if     (  !  flag     &&     n     ==     0  )      cout      < <     curr  ->  data      < <     ' '  ;      }      // invert flag for next level      flag     =     !  flag  ;      }   }   /* Driver program to test above functions */   int     main  ()   {      // Binary Tree of Height 4      Node  *     root     =     newNode  (  1  );      root  ->  left     =     newNode  (  2  );      root  ->  right     =     newNode  (  3  );      root  ->  left  ->  left     =     newNode  (  4  );      root  ->  left  ->  right     =     newNode  (  5  );      root  ->  right  ->  right     =     newNode  (  7  );      root  ->  left  ->  left  ->  left     =     newNode  (  8  );      root  ->  left  ->  left  ->  right     =     newNode  (  9  );      root  ->  left  ->  right  ->  left     =     newNode  (  10  );      root  ->  left  ->  right  ->  right     =     newNode  (  11  );      root  ->  right  ->  right  ->  left     =     newNode  (  14  );      root  ->  right  ->  right  ->  right     =     newNode  (  15  );      root  ->  left  ->  left  ->  left  ->  left     =     newNode  (  16  );      root  ->  left  ->  left  ->  left  ->  right     =     newNode  (  17  );      root  ->  right  ->  right  ->  right  ->  right     =     newNode  (  31  );      printExtremeNodes  (  root  );      return     0  ;   }   
Java
   // Java program to print nodes of extreme corners    //of each level in alternate order    import     java.util.*  ;   class   GFG   {       // A binary tree node has data pointer to left child    //and a pointer to right child /   static     class   Node      {         int     data  ;         Node     left       right  ;      };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   static     Node     newNode  (  int     data  )      {         Node     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    static     void     printExtremeNodes  (  Node     root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       Queue   <  Node  >     q     =     new     LinkedList   <  Node  >  ();         q  .  add  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       boolean     flag     =     false  ;         while     (  q  .  size  ()  >  0  )         {         // nodeCount indicates number of nodes       // at current level.       int     nodeCount     =     q  .  size  ();         int     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and Enqueue all nodes of next level       while     (  n  -->  0  )         {         Node     curr     =     q  .  peek  ();         // Enqueue left child       if     (  curr  .  left  !=  null  )         q  .  add  (  curr  .  left  );         // Enqueue right child       if     (  curr  .  right  !=  null  )         q  .  add  (  curr  .  right  );         // Dequeue node       q  .  remove  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         System  .  out  .  print  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         System  .  out  .  print  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   public     static     void     main  (  String     args  []  )   {         // Binary Tree of Height 4       Node     root     =     newNode  (  1  );         root  .  left     =     newNode  (  2  );         root  .  right     =     newNode  (  3  );         root  .  left  .  left     =     newNode  (  4  );         root  .  left  .  right     =     newNode  (  5  );         root  .  right  .  right     =     newNode  (  7  );         root  .  left  .  left  .  left     =     newNode  (  8  );         root  .  left  .  left  .  right     =     newNode  (  9  );         root  .  left  .  right  .  left     =     newNode  (  10  );         root  .  left  .  right  .  right     =     newNode  (  11  );         root  .  right  .  right  .  left     =     newNode  (  14  );         root  .  right  .  right  .  right     =     newNode  (  15  );         root  .  left  .  left  .  left  .  left     =     newNode  (  16  );         root  .  left  .  left  .  left  .  right     =     newNode  (  17  );         root  .  right  .  right  .  right  .  right     =     newNode  (  31  );         printExtremeNodes  (  root  );      }   }      // This code is contributed by Arnab Kundu   
Python
   # Python program to print nodes of extreme corners   # of each level in alternate order   # Utility class to create a node    class   Node  :   def   __init__  (  self     key  ):   self  .  data   =   key   self  .  left   =   self  .  right   =   None   # Utility function to create a tree node   def   newNode  (   data  ):   temp   =   Node  (  0  )   temp  .  data   =   data   temp  .  left   =   temp  .  right   =   None   return   temp   # Function to print nodes of extreme corners   # of each level in alternate order    def   printExtremeNodes  (   root  ):   if   (  root   ==   None  ):   return   # Create a queue and enqueue left and right   # children of root   q   =   []   q  .  append  (  root  )   # flag to indicate whether leftmost node or   # the rightmost node has to be printed   flag   =   False   while   (  len  (  q  )   >   0  ):   # nodeCount indicates number of nodes   # at current level.   nodeCount   =   len  (  q  )   n   =   nodeCount   # Dequeue all nodes of current level   # and Enqueue all nodes of next level   while   (  n   >   0  ):   n   =   n   -   1   curr   =   q  [  0  ]   # Enqueue left child   if   (  curr  .  left   !=   None  ):   q  .  append  (  curr  .  left  )   # Enqueue right child   if   (  curr  .  right   !=   None  ):   q  .  append  (  curr  .  right  )   # Dequeue node   q  .  pop  (  0  )   # if flag is true print leftmost node   if   (  flag   and   n   ==   nodeCount   -   1  ):   print  (   curr  .  data      end  =  ' '  )   # if flag is false print rightmost node   if   (  not   flag   and   n   ==   0  ):   print  (   curr  .  data     end  =   ' '  )   # invert flag for next level   flag   =   not   flag   # Driver program to test above functions    # Binary Tree of Height 4   root   =   newNode  (  1  )   root  .  left   =   newNode  (  2  )   root  .  right   =   newNode  (  3  )   root  .  left  .  left   =   newNode  (  4  )   root  .  left  .  right   =   newNode  (  5  )   root  .  right  .  right   =   newNode  (  7  )   root  .  left  .  left  .  left   =   newNode  (  8  )   root  .  left  .  left  .  right   =   newNode  (  9  )   root  .  left  .  right  .  left   =   newNode  (  10  )   root  .  left  .  right  .  right   =   newNode  (  11  )   root  .  right  .  right  .  left   =   newNode  (  14  )   root  .  right  .  right  .  right   =   newNode  (  15  )   root  .  left  .  left  .  left  .  left   =   newNode  (  16  )   root  .  left  .  left  .  left  .  right   =   newNode  (  17  )   root  .  right  .  right  .  right  .  right   =   newNode  (  31  )   printExtremeNodes  (  root  )   # This code is contributed by Arnab Kundu   
C#
   // C# program to print nodes of extreme corners    //of each level in alternate order    using     System  ;   using     System.Collections.Generic  ;   class     GFG   {       // A binary tree node has data pointer to left child    //and a pointer to right child /   public     class     Node      {         public     int     data  ;         public     Node     left       right  ;      };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   static     Node     newNode  (  int     data  )      {         Node     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    static     void     printExtremeNodes  (  Node     root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       Queue   <  Node  >     q     =     new     Queue   <  Node  >  ();         q  .  Enqueue  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       Boolean     flag     =     false  ;         while     (  q  .  Count     >     0  )         {         // nodeCount indicates number of nodes       // at current level.       int     nodeCount     =     q  .  Count  ;         int     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and Enqueue all nodes of next level       while     (  n  -->  0  )         {         Node     curr     =     q  .  Peek  ();         // Enqueue left child       if     (  curr  .  left     !=     null  )         q  .  Enqueue  (  curr  .  left  );         // Enqueue right child       if     (  curr  .  right     !=     null  )         q  .  Enqueue  (  curr  .  right  );         // Dequeue node       q  .  Dequeue  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         Console  .  Write  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         Console  .  Write  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   public     static     void     Main  (  String     []  args  )   {         // Binary Tree of Height 4       Node     root     =     newNode  (  1  );         root  .  left     =     newNode  (  2  );         root  .  right     =     newNode  (  3  );         root  .  left  .  left     =     newNode  (  4  );         root  .  left  .  right     =     newNode  (  5  );         root  .  right  .  right     =     newNode  (  7  );         root  .  left  .  left  .  left     =     newNode  (  8  );         root  .  left  .  left  .  right     =     newNode  (  9  );         root  .  left  .  right  .  left     =     newNode  (  10  );         root  .  left  .  right  .  right     =     newNode  (  11  );         root  .  right  .  right  .  left     =     newNode  (  14  );         root  .  right  .  right  .  right     =     newNode  (  15  );         root  .  left  .  left  .  left  .  left     =     newNode  (  16  );         root  .  left  .  left  .  left  .  right     =     newNode  (  17  );         root  .  right  .  right  .  right  .  right     =     newNode  (  31  );         printExtremeNodes  (  root  );      }   }   // This code is contributed by Rajput-Ji   
JavaScript
    <  script  >       // JavaScript program to print nodes of extreme corners    //of each level in alternate order        // A binary tree node has data pointer to left child    //and a pointer to right child /   class     Node      {         constructor  ()      {      this  .  data     =     0  ;      this  .  left     =     null  ;      this  .  right     =     null  ;      }   };      // Helper function that allocates a new node with the    //given data and null left and right pointers. /   function     newNode  (  data  )      {         var     node     =     new     Node  ();         node  .  data     =     data  ;         node  .  right     =     node  .  left     =     null  ;         return     node  ;      }      // Function to print nodes of extreme corners    //of each level in alternate order    function     printExtremeNodes  (  root  )      {         if     (  root     ==     null  )         return  ;         // Create a queue and enqueue left and right       // children of root       var     q     =     [];         q  .  push  (  root  );         // flag to indicate whether leftmost node or       // the rightmost node has to be printed       var     flag     =     false  ;         while     (  q  .  length     >     0  )         {         // nodeCount indicates number of nodes       // at current level.       var     nodeCount     =     q  .  length  ;         var     n     =     nodeCount  ;         // Dequeue all nodes of current level       // and push all nodes of next level       while     (  n  -->  0  )         {         var     curr     =     q  [  0  ];         // push left child       if     (  curr  .  left     !=     null  )         q  .  push  (  curr  .  left  );         // push right child       if     (  curr  .  right     !=     null  )         q  .  push  (  curr  .  right  );         // Dequeue node       q  .  shift  ();         // if flag is true print leftmost node       if     (  flag     &&     n     ==     nodeCount     -     1  )         document  .  write  (     curr  .  data     +     ' '  );      // if flag is false print rightmost node       if     (  !  flag     &&     n     ==     0  )         document  .  write  (     curr  .  data     +     ' '  );         }             // invert flag for next level       flag     =     !  flag  ;         }      }      // Driver code   // Binary Tree of Height 4    var     root     =     newNode  (  1  );      root  .  left     =     newNode  (  2  );      root  .  right     =     newNode  (  3  );      root  .  left  .  left     =     newNode  (  4  );      root  .  left  .  right     =     newNode  (  5  );      root  .  right  .  right     =     newNode  (  7  );      root  .  left  .  left  .  left     =     newNode  (  8  );      root  .  left  .  left  .  right     =     newNode  (  9  );      root  .  left  .  right  .  left     =     newNode  (  10  );      root  .  left  .  right  .  right     =     newNode  (  11  );      root  .  right  .  right  .  left     =     newNode  (  14  );      root  .  right  .  right  .  right     =     newNode  (  15  );      root  .  left  .  left  .  left  .  left     =     newNode  (  16  );      root  .  left  .  left  .  left  .  right     =     newNode  (  17  );      root  .  right  .  right  .  right  .  right     =     newNode  (  31  );      printExtremeNodes  (  root  );       <  /script>    

Çıkış
1 2 7 8 31  


Zaman karmaşıklığı: O(n) burada n, belirli bir ikili ağaçtaki toplam düğüm sayısıdır.
Yardımcı Alan: O(n) burada n, belirli bir ikili ağaçta sıraya bağlı olarak düğümlerin toplam sayısıdır.

Egzersiz yapmak - Her düzeyin en uç köşelerindeki düğümleri aşağıdan yukarıya doğru alternatif sırayla yazdırın.

 


En Makaleler

Kategori

Ilginç Haberler