Kara mayınlarının olduğu bir yolda en kısa güvenli rotayı bulun

Kara mayınlarının olduğu bir yolda en kısa güvenli rotayı bulun
GfG Practice'de deneyin girdi_matrisi

Dikdörtgensel bir matris verildiğinde mat[][] Bazı hücrelerin mayın içerdiği (0 ile gösterilir) ve geri kalanların güvenli olduğu (1 ile gösterilir) durumda, ilk sütundaki herhangi bir hücreden son sütundaki herhangi bir hücreye giden en kısa güvenli rotanın uzunluğunu bulun.

  • Kara mayınları güvensizdir ve bitişik dört hücresi (yukarı, sol, sağ) da güvensizdir.
  • Bitişik güvenli hücrelere yalnızca yatay ve dikey hareketlere izin verilir.
  • Son sütuna güvenli bir şekilde ulaşmak mümkün değilse -1 değerini döndürün.

Örnekler:  

Giriş:
ile[][] = [ [1 0 1 1 1]
[1 1 1 1 1]
[1 1 1 1 1]
[1 1 1 0 1]
[1 1 1 1 0] ]
Çıkış: 6
Açıklama:

En kısa uzunluğu görebiliriz
Güvenli yol 6'dır.

Giriş:
ile[][] = [ [1 1 1 1 1]
[1 1 0 1 1]
[1 1 1 1 1] ]
Çıkış: -1
Açıklama: Buradan olası bir yol yok
ilk sütundan son sütuna.

İçerik Tablosu

[Yaklaşım] Geri İzlemeyi Kullanma

Fikir kullanmaktır Geri izleme . Öncelikle kara mayınlarının tüm bitişik hücrelerini güvensiz olarak işaretliyoruz. Daha sonra matrisin ilk sütunundaki her güvenli hücre için izin verilen tüm yönlerde ilerliyoruz ve yinelemeli olarak bunların hedefe ulaşıp ulaşmadığını kontrol ediyoruz. Hedef bulunursa en kısa yolun değerini güncelleriz, aksi takdirde yukarıdaki çözümlerin hiçbiri işe yaramazsa işlevimizden false değerini döndürürüz.

C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to mark unsafe cells (landmines and their adjacent cells)   void     markUnsafeCells  (  vector   <  vector   <  int  >>     &  mat  )     {      int     r     =     mat  .  size  ();      int     c     =     mat  [  0  ].  size  ();          // Directions for adjacent cells: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          vector   <  vector   <  int  >>     temp     =     mat  ;          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }   }   // DFS to find shortest path from (i j) to any cell in last column   int     dfs  (  vector   <  vector   <  int  >>     &  mat       vector   <  vector   <  bool  >>     &  visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  size  ();          if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     INT_MAX  ;      }          if     (  j     ==     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          int     minPath     =     INT_MAX  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     INT_MAX  )     {      minPath     =     min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;   }   int     findShortestPath  (  vector   <  vector   <  int  >>     &  mat  )     {      int     r     =     mat  .  size  ();      int     c     =     mat  [  0  ].  size  ();          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          // Initialize visited array      vector   <  vector   <  bool  >>     visited  (  r       vector   <  bool  >  (  c       false  ));          int     minPath     =     INT_MAX  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     INT_MAX  )     {      minPath     =     min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     INT_MAX     ?     -1     :     minPath  ;   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          int     result     =     findShortestPath  (  mat  );      cout      < <     result      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   class   Solution     {      // Function to mark unsafe cells (landmines and their adjacent cells)      private     void     markUnsafeCells  (  int  [][]     mat  )     {      int     r     =     mat  .  length  ;      int     c     =     mat  [  0  ]  .  length  ;              int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          // Create a copy to avoid modifying original safe cells prematurely      int  [][]     temp     =     new     int  [  r  ][  c  ]  ;      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      temp  [  i  ][  j  ]     =     mat  [  i  ][  j  ]  ;      }      }          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }      }          // DFS to find shortest path from (i j) to any cell in last column      private     int     dfs  (  int  [][]     mat       boolean  [][]     visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     Integer  .  MAX_VALUE  ;      }      if     (  j     ==     c     -     1  )     {      return     1  ;      }      visited  [  i  ][  j  ]     =     true  ;          int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          int     minPath     =     Integer  .  MAX_VALUE  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     Integer  .  MAX_VALUE  )     {      minPath     =     Math  .  min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;      }          public     int     findShortestPath  (  int  [][]     mat  )     {      int     r     =     mat  .  length  ;      int     c     =     mat  [  0  ]  .  length  ;          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          boolean  [][]     visited     =     new     boolean  [  r  ][  c  ]  ;          int     minPath     =     Integer  .  MAX_VALUE  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     Integer  .  MAX_VALUE  )     {      minPath     =     Math  .  min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     Integer  .  MAX_VALUE     ?     -  1     :     minPath  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          Solution     solution     =     new     Solution  ();      int     result     =     solution  .  findShortestPath  (  mat  );      System  .  out  .  println  (  result  );      }   }   
Python
   # Function to mark unsafe cells (landmines and their adjacent cells)   def   mark_unsafe_cells  (  mat  ):   r   =   len  (  mat  )   c   =   len  (  mat  [  0  ])   # Directions for adjacent cells: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   # Create a copy to avoid modifying original safe cells prematurely   temp   =   [  row  [:]   for   row   in   mat  ]   # Mark adjacent cells of landmines (0) as unsafe (0)   for   i   in   range  (  r  ):   for   j   in   range  (  c  ):   if   temp  [  i  ][  j  ]   ==   0  :   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   if   0    <=   ni    <   r   and   0    <=   nj    <   c  :   mat  [  ni  ][  nj  ]   =   0   # DFS to find shortest path from (i j) to any cell in last column   def   dfs  (  mat     visited     i     j     c  ):   r   =   len  (  mat  )   # If out of bounds blocked or visited   if   i    <   0   or   i   >=   r   or   j    <   0   or   j   >=   c   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   float  (  'inf'  )   if   j   ==   c   -   1  :   return   1   visited  [  i  ][  j  ]   =   True   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   min_path   =   float  (  'inf'  )   # Try all four directions   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   path_length   =   dfs  (  mat     visited     ni     nj     c  )   if   path_length   !=   float  (  'inf'  ):   min_path   =   min  (  min_path     1   +   path_length  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   min_path   def   findShortestPath  (  mat  ):   r   =   len  (  mat  )   c   =   len  (  mat  [  0  ])   # Mark all adjacent cells of landmines as unsafe   mark_unsafe_cells  (  mat  )   visited   =   [[  False  ]   *   c   for   _   in   range  (  r  )]   min_path   =   float  (  'inf'  )   # Try starting from each safe cell in the first column   for   i   in   range  (  r  ):   if   mat  [  i  ][  0  ]   ==   1  :   path_length   =   dfs  (  mat     visited     i     0     c  )   if   path_length   !=   float  (  'inf'  ):   min_path   =   min  (  min_path     path_length  )   return   -  1   if   min_path   ==   float  (  'inf'  )   else   min_path   def   main  ():   mat   =   [   [  1     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  1     1     1     1     0  ]   ]   result   =   findShortestPath  (  mat  )   print  (  result  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG     {      // Function to mark unsafe cells (landmines and their adjacent cells)      private     void     MarkUnsafeCells  (  int  [][]     mat  )     {      int     r     =     mat  .  Length  ;      int     c     =     mat  [  0  ].  Length  ;          // Directions for adjacent cells: up down left right      int  []     row     =     {     -  1       1       0       0     };      int  []     col     =     {     0       0       -  1       1     };          // Create a copy to avoid modifying original safe cells prematurely      int  [][]     temp     =     new     int  [  r  ][];      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      temp  [  i  ]     =     new     int  [  c  ];      Array  .  Copy  (  mat  [  i  ]     temp  [  i  ]     c  );      }          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }      }          // DFS to find shortest path from (i j) to any cell in last column      private     int     Dfs  (  int  [][]     mat       bool  [][]     visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  Length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     int  .  MaxValue  ;      }          if     (  j     ==     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;      int  []     row     =     {     -  1       1       0       0     };      int  []     col     =     {     0       0       -  1       1     };          int     minPath     =     int  .  MaxValue  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     Dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     int  .  MaxValue  )     {      minPath     =     Math  .  Min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;      }          public     int     FindShortestPath  (  int  [][]     mat  )     {      int     r     =     mat  .  Length  ;      int     c     =     mat  [  0  ].  Length  ;          // Mark all adjacent cells of landmines as unsafe      MarkUnsafeCells  (  mat  );          bool  [][]     visited     =     new     bool  [  r  ][];      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      visited  [  i  ]     =     new     bool  [  c  ];      }          int     minPath     =     int  .  MaxValue  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     Dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     int  .  MaxValue  )     {      minPath     =     Math  .  Min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     int  .  MaxValue     ?     -  1     :     minPath  ;      }      static     void     Main  (  string  []     args  )     {      int  [][]     mat     =     new     int  [][]     {      new     int  []     {     1       0       1       1       1     }      new     int  []     {     1       1       1       1       1     }      new     int  []     {     1       1       1       1       1     }      new     int  []     {     1       1       1       0       1     }      new     int  []     {     1       1       1       1       0     }      };          GFG     solution     =     new     GFG  ();      int     result     =     solution  .  FindShortestPath  (  mat  );      Console  .  WriteLine  (  result  );      }   }   
JavaScript
   function     markUnsafeCells  (  mat  )     {      const     r     =     mat  .  length  ;      const     c     =     mat  [  0  ].  length  ;          // Directions for adjacent cells: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          // Create a copy to avoid modifying original safe cells prematurely      const     temp     =     mat  .  map  (  row     =>     [...  row  ]);          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ===     0  )     {      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }   }   function     dfs  (  mat       visited       i       j       c  )     {      const     r     =     mat  .  length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     Infinity  ;      }          // If reached the last column      if     (  j     ===     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;          const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          let     minPath     =     Infinity  ;          // Try all four directions      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !==     Infinity  )     {      minPath     =     Math  .  min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;   }   function     findShortestPath  (  mat  )     {      const     r     =     mat  .  length  ;      const     c     =     mat  [  0  ].  length  ;          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          const     visited     =     Array  (  r  ).  fill  ().  map  (()     =>     Array  (  c  ).  fill  (  false  ));          let     minPath     =     Infinity  ;          // Try starting from each safe cell in the first column      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ===     1  )     {      const     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !==     Infinity  )     {      minPath     =     Math  .  min  (  minPath       pathLength  );      }      }      }          return     minPath     ===     Infinity     ?     -  1     :     minPath  ;   }   const     mat     =     [      [  1       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  1       1       1       1       0  ]   ];   const     result     =     findShortestPath  (  mat  );   console  .  log  (  result  );   

Çıkış
6  

Zaman Karmaşıklığı: O(4^(r * c)) burada r, verilen matristeki satır sayısı ve c, sütun sayısıdır.
Yardımcı Alan: O(r * c) visted[r][c] gibi ekstra alan kullandığımız için.

[Optimize Yaklaşım] Genişlik Öncelikli Aramayı Kullanma

Genişlik-Önce Arama kullanılarak polinom zamanda çözülebilir. Son sütundaki tüm güvenli hücreleri mesafe = 1 olacak şekilde kuyruğa alın. BFS ilerledikçe son sütundan her hücreye giden en kısa yol hesaplanır. Son olarak, ilk sütundaki ulaşılabilir tüm hücreler arasında minimum mesafe çıktısı alınır.

C++
   #include          #include         #include          #include         #include         #include             using     namespace     std  ;      int     rowNum  [  4  ]     =     {  -1       0       0       1  };         int     colNum  [  4  ]     =     {  0       -1       1       0  };             int     findShortestPath  (  vector   <  vector   <  int  >>     &  mat  )      {      int     n     =     mat  .  size  ();         int     m     =     mat  [  0  ].  size  ();             queue   <  array   <  int    3  >>     q  ;     // Queue to perform BFS          int     d  [  n  ][  m  ];                 for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for  (  int     j     =     0  ;     j      <     m  ;     j  ++  )      d  [  i  ][  j  ]     =     1e9  ;          // Lambda function to check if cell is valid      auto     isValid     =     [  &  ](  int     i       int     j  )     {      if  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  )     return     false  ;      return     true  ;      };          // Lambda function to check if cell and its adjacent cells are safe      auto     check     =     [  &  ](  int     i       int     j  )     {      if  (  !  isValid  (  i       j  ))     return     false  ;      for  (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      if  (  isValid  (  i     +     rowNum  [  k  ]     j     +     colNum  [  k  ])     &&     !  mat  [  i     +     rowNum  [  k  ]][  j     +     colNum  [  k  ]])     return     false  ;      }      return     true  ;      };          // Pushing cells from the rightmost column into the queue      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      if  (  check  (  i       m     -     1  ))     {      q  .  push  ({  i       m     -     1       1  });      }      }          // BFS traversal      while  (  !  q  .  empty  ())     {      auto     z     =     q  .  front  ();      int     x     =     z  [  0  ]     y     =     z  [  1  ]     dis     =     z  [  2  ];      q  .  pop  ();      if  (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for  (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      if  (  check  (  x     +     rowNum  [  k  ]     y     +     colNum  [  k  ]))     {      q  .  push  ({  x     +     rowNum  [  k  ]     y     +     colNum  [  k  ]     dis     +     1  });      }      }      }      }          // Finding the minimum distance in the first column      int     ans     =     1e9  ;      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      ans     =     min  (  ans       d  [  i  ][  0  ]);          // If no safe path found return -1      if  (  ans     >=     1e9  )     ans     =     -1  ;      return     ans  ;      }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          int     result     =     findShortestPath  (  mat  );      cout      < <     result      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.*  ;   public     class   Solution     {      static     int  []     rowNum     =     {  -  1       0       0       1  };      static     int  []     colNum     =     {  0       -  1       1       0  };      public     static     int     findShortestPath  (  int  [][]     mat  )     {      int     n     =     mat  .  length  ;      int     m     =     mat  [  0  ]  .  length  ;      Queue   <  int  []>     q     =     new     LinkedList   <>  ();      int  [][]     d     =     new     int  [  n  ][  m  ]  ;      // Initializing distance array with large values      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      Arrays  .  fill  (  d  [  i  ]       (  int  )     1e9  );      }      // Lambda-like helper function: check if cell is valid      java  .  util  .  function  .  BiFunction   <  Integer       Integer       Boolean  >     isValid     =     (  i       j  )     ->     {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      };      // Helper function: check if cell and adjacent cells are safe      java  .  util  .  function  .  BiFunction   <  Integer       Integer       Boolean  >     check     =     (  i       j  )     ->     {      if     (  !  isValid  .  apply  (  i       j  ))     return     false  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     rowNum  [  k  ]  ;      int     nj     =     j     +     colNum  [  k  ]  ;      if     (  isValid  .  apply  (  ni       nj  )     &&     mat  [  ni  ][  nj  ]     ==     0  )     return     false  ;      }      return     true  ;      };      // Pushing cells from the rightmost column into the queue      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      if     (  check  .  apply  (  i       m     -     1  ))     {      q  .  add  (  new     int  []  {  i       m     -     1       1  });      }      }      // BFS traversal      while     (  !  q  .  isEmpty  ())     {      int  []     z     =     q  .  poll  ();      int     x     =     z  [  0  ]       y     =     z  [  1  ]       dis     =     z  [  2  ]  ;      if     (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     x     +     rowNum  [  k  ]  ;      int     nj     =     y     +     colNum  [  k  ]  ;      if     (  check  .  apply  (  ni       nj  ))     {      q  .  add  (  new     int  []  {  ni       nj       dis     +     1  });      }      }      }      }      // Finding the minimum distance in the first column      int     ans     =     (  int  )     1e9  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans     =     Math  .  min  (  ans       d  [  i  ][  0  ]  );      }      // If no safe path found return -1      if     (  ans     >=     1e9  )     ans     =     -  1  ;      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };      int     result     =     findShortestPath  (  mat  );      System  .  out  .  println  (  result  );      }   }   
Python
   from   collections   import   deque   rowNum   =   [  -  1     0     0     1  ]   colNum   =   [  0     -  1     1     0  ]   def   findShortestPath  (  mat  ):   n   =   len  (  mat  )   m   =   len  (  mat  [  0  ])   q   =   deque  ()   d   =   [[  10  **  9   for   _   in   range  (  m  )]   for   _   in   range  (  n  )]   # Check if cell is valid   def   isValid  (  i     j  ):   return   not   (  i    <   0   or   i   >=   n   or   j    <   0   or   j   >=   m  )   # Check if cell and its adjacent cells are safe   def   check  (  i     j  ):   if   not   isValid  (  i     j  ):   return   False   for   k   in   range  (  4  ):   ni     nj   =   i   +   rowNum  [  k  ]   j   +   colNum  [  k  ]   if   isValid  (  ni     nj  )   and   mat  [  ni  ][  nj  ]   ==   0  :   return   False   return   True   # Pushing cells from the rightmost column into the queue   for   i   in   range  (  n  ):   if   check  (  i     m   -   1  ):   q  .  append  ((  i     m   -   1     1  ))   # BFS traversal   while   q  :   x     y     dis   =   q  .  popleft  ()   if   d  [  x  ][  y  ]   >   dis  :   d  [  x  ][  y  ]   =   dis   for   k   in   range  (  4  ):   ni     nj   =   x   +   rowNum  [  k  ]   y   +   colNum  [  k  ]   if   check  (  ni     nj  ):   q  .  append  ((  ni     nj     dis   +   1  ))   # Finding the minimum distance in the first column   ans   =   min  (  d  [  i  ][  0  ]   for   i   in   range  (  n  ))   # If no safe path found return -1   if   ans   >=   10  **  9  :   ans   =   -  1   return   ans   if   __name__   ==   '__main__'  :   mat   =   [   [  1     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  1     1     1     1     0  ]   ]   result   =   findShortestPath  (  mat  )   print  (  result  )   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     Solution   {      static     int  []     rowNum     =     {     -  1       0       0       1     };      static     int  []     colNum     =     {     0       -  1       1       0     };      // Check if cell is valid      static     bool     IsValid  (  int     i       int     j       int     n       int     m  )      {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      }      // Check if cell and its adjacent cells are safe      static     bool     Check  (  int     i       int     j       int  [][]     mat       int     n       int     m  )      {      if     (  !  IsValid  (  i       j       n       m  ))     return     false  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     rowNum  [  k  ];      int     nj     =     j     +     colNum  [  k  ];      if     (  IsValid  (  ni       nj       n       m  )     &&     mat  [  ni  ][  nj  ]     ==     0  )     return     false  ;      }      return     true  ;      }      public     static     int     FindShortestPath  (  int  [][]     mat  )      {      int     n     =     mat  .  Length  ;      int     m     =     mat  [  0  ].  Length  ;      Queue   <  (  int       int       int  )  >     q     =     new     Queue   <  (  int       int       int  )  >  ();      int  []     d     =     new     int  [  n       m  ];      // Initialize distance array with large value      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      d  [  i       j  ]     =     int  .  MaxValue     /     2  ;      // Push safe cells from rightmost column      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      if     (  Check  (  i       m     -     1       mat       n       m  ))      {      q  .  Enqueue  ((  i       m     -     1       1  ));      }      }      // BFS traversal      while     (  q  .  Count     >     0  )      {      var     (  x       y       dis  )     =     q  .  Dequeue  ();      if     (  d  [  x       y  ]     >     dis  )      {      d  [  x       y  ]     =     dis  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     x     +     rowNum  [  k  ];      int     nj     =     y     +     colNum  [  k  ];      if     (  Check  (  ni       nj       mat       n       m  ))      {      q  .  Enqueue  ((  ni       nj       dis     +     1  ));      }      }      }      }      // Find minimum distance in the first column      int     ans     =     int  .  MaxValue     /     2  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      ans     =     Math  .  Min  (  ans       d  [  i       0  ]);      return     ans     >=     int  .  MaxValue     /     2     ?     -  1     :     ans  ;      }      static     void     Main  ()      {      int  [][]     mat     =     new     int  [][]      {      new     int  []     {  1       0       1       1       1  }      new     int  []     {  1       1       1       1       1  }      new     int  []     {  1       1       1       1       1  }      new     int  []     {  1       1       1       0       1  }      new     int  []     {  1       1       1       1       0  }      };      int     result     =     FindShortestPath  (  mat  );      Console  .  WriteLine  (  result  );      }   }   
JavaScript
   function     findShortestPath  (  mat  )     {      const     n     =     mat  .  length  ;      const     m     =     mat  [  0  ].  length  ;      const     rowNum     =     [  -  1       0       0       1  ];      const     colNum     =     [  0       -  1       1       0  ];      // Distance matrix initialized to large value      const     d     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  m  ).  fill  (  Number  .  MAX_SAFE_INTEGER  ));      // Check if cell is valid      function     isValid  (  i       j  )     {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      }      // Check if cell and its adjacent cells are safe      function     check  (  i       j  )     {      if     (  !  isValid  (  i       j  ))     return     false  ;      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      let     ni     =     i     +     rowNum  [  k  ];      let     nj     =     j     +     colNum  [  k  ];      if     (  isValid  (  ni       nj  )     &&     mat  [  ni  ][  nj  ]     ===     0  )     return     false  ;      }      return     true  ;      }      // Queue for BFS      let     q     =     [];      // Push safe cells from rightmost column      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      if     (  check  (  i       m     -     1  ))     {      q  .  push  ([  i       m     -     1       1  ]);      }      }      // BFS traversal      while     (  q  .  length     >     0  )     {      let     [  x       y       dis  ]     =     q  .  shift  ();      if     (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      let     ni     =     x     +     rowNum  [  k  ];      let     nj     =     y     +     colNum  [  k  ];      if     (  check  (  ni       nj  ))     {      q  .  push  ([  ni       nj       dis     +     1  ]);      }      }      }      }      // Find minimum distance in first column      let     ans     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans     =     Math  .  min  (  ans       d  [  i  ][  0  ]);      }      return     ans     >=     Number  .  MAX_SAFE_INTEGER     ?     -  1     :     ans  ;   }   const     mat     =     [      [  1       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  1       1       1       1       0  ]   ];   const     result     =     findShortestPath  (  mat  );   console  .  log  (  result  );   

Çıkış
6  

Zaman Karmaşıklığı: O(r * c) burada r ve c, sırasıyla verilen matristeki satır ve sütun sayısıdır.
Yardımcı Alan: O(r * c)