Eksik Sayı

Eksik Sayı
GfG Practice'de deneyin #practiceLinkDiv { görüntü: yok !önemli; }

Bir n sayısının, ile gösterilen sayının tüm bölenlerinin toplamı olması durumunda Eksik Sayı olduğu söylenir. bölenlerToplam(n) n sayısının değerinin iki katından küçüktür. Ve bu iki değer arasındaki farka denir. eksiklik .
Matematiksel olarak aşağıdaki koşul geçerliyse sayının Eksik olduğu söylenir: 
 

  divisorsSum(n)  < 2 * n     deficiency   = (2 * n) - divisorsSum(n) 


İlk birkaç Eksik Sayı şunlardır:
1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 19 .....
Bir sayı verildiğinde görevimiz bu sayının Eksik sayı olup olmadığını bulmaktır. 
Örnekler:  
 

Input: 21 Output: YES Divisors are 1 3 7 and 21. Sum of divisors is 32. This sum is less than 2*21 or 42. Input: 12 Output: NO Input: 17 Output: YES 


 

Önerilen Uygulama Eksik Sayı Deneyin!


A Basit çözüm 1'den n'ye kadar tüm sayıları yinelemek ve sayının n'yi bölüp bölmediğini kontrol etmek ve toplamı hesaplamaktır. Bu toplamın 2 * n'den küçük olup olmadığını kontrol edin.
Bu yaklaşımın Zaman Karmaşıklığı: O ( n )
Optimize Edilmiş Çözüm:  
Dikkatlice incelersek n sayısının bölenleri çiftler halinde bulunur. Örneğin, n = 100 ise tüm bölen çiftleri şöyledir: (1 100) (2 50) (4 25) (5 20) (10 10)
Bu gerçeği kullanarak programımızı hızlandırabiliriz. 
Bölenleri kontrol ederken (10 10) örneğinde olduğu gibi iki eşit bölenin olup olmadığına dikkat etmeliyiz. Bu durumda toplam hesaplamasında bunlardan yalnızca birini dikkate alacağız.
Optimize edilmiş yaklaşımın uygulanması 
 

C++
   // C++ program to implement an Optimized Solution   // to check Deficient Number   #include          using     namespace     std  ;   // Function to calculate sum of divisors   int     divisorsSum  (  int     n  )   {      int     sum     =     0  ;     // Initialize sum of prime factors      // Note that this loop runs till square root of n      for     (  int     i     =     1  ;     i      <=     sqrt  (  n  );     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;   }   // Function to check Deficient Number   bool     isDeficient  (  int     n  )   {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));   }   /* Driver program to test above function */   int     main  ()   {      isDeficient  (  12  )     ?     cout      < <     'YES  n  '     :     cout      < <     'NO  n  '  ;      isDeficient  (  15  )     ?     cout      < <     'YES  n  '     :     cout      < <     'NO  n  '  ;      return     0  ;   }   
Java
   // Java program to check Deficient Number   import     java.io.*  ;   class   GFG     {      // Function to calculate sum of divisors      static     int     divisorsSum  (  int     n  )      {      int     sum     =     0  ;     // Initialize sum of prime factors      // Note that this loop runs till square root of n      for     (  int     i     =     1  ;     i      <=     (  Math  .  sqrt  (  n  ));     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;      }      // Function to check Deficient Number      static     boolean     isDeficient  (  int     n  )      {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }      /* Driver program to test above function */      public     static     void     main  (  String     args  []  )      {      if     (  isDeficient  (  12  ))      System  .  out  .  println  (  'YES'  );      else      System  .  out  .  println  (  'NO'  );      if     (  isDeficient  (  15  ))      System  .  out  .  println  (  'YES'  );      else      System  .  out  .  println  (  'NO'  );      }   }   // This code is contributed by Nikita Tiwari   
Python3
   # Python program to implement an Optimized    # Solution to check Deficient Number   import   math   # Function to calculate sum of divisors   def   divisorsSum  (  n  )   :   sum   =   0   # Initialize sum of prime factors   # Note that this loop runs till square   # root of n   i   =   1   while   i   <=   math  .  sqrt  (  n  )   :   if   (  n   %   i   ==   0  )   :   # If divisors are equal take only one   # of them   if   (  n   //   i   ==   i  )   :   sum   =   sum   +   i   else   :   # Otherwise take both   sum   =   sum   +   i  ;   sum   =   sum   +   (  n   //   i  )   i   =   i   +   1   return   sum   # Function to check Deficient Number   def   isDeficient  (  n  )   :   # Check if sum(n)  < 2 * n   return   (  divisorsSum  (  n  )    <   (  2   *   n  ))   # Driver program to test above function    if   (   isDeficient  (  12  )   ):   print   (  'YES'  )   else   :   print   (  'NO'  )   if   (   isDeficient  (  15  )   )   :   print   (  'YES'  )   else   :   print   (  'NO'  )   # This Code is contributed by Nikita Tiwari   
C#
   // C# program to implement an Optimized Solution   // to check Deficient Number   using     System  ;   class     GFG     {      // Function to calculate sum of      // divisors      static     int     divisorsSum  (  int     n  )      {      // Initialize sum of prime factors      int     sum     =     0  ;      // Note that this loop runs till      // square root of n      for     (  int     i     =     1  ;     i      <=     (  Math  .  Sqrt  (  n  ));     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal      // take only one of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;      }      // Function to check Deficient Number      static     bool     isDeficient  (  int     n  )      {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }      /* Driver program to test above function */      public     static     void     Main  ()      {      string     var     =     isDeficient  (  12  )     ?     'YES'     :     'NO'  ;      Console  .  WriteLine  (  var  );      string     var1     =     isDeficient  (  15  )     ?     'YES'     :     'NO'  ;      Console  .  WriteLine  (  var1  );      }   }   // This code is contributed by vt_m   
PHP
      // PHP program to implement    // an Optimized Solution   // to check Deficient Number   // Function to calculate   // sum of divisors   function   divisorsSum  (  $n  )   {   // Initialize sum of   // prime factors   $sum   =   0  ;   // Note that this loop runs    // till square root of n   for   (  $i   =   1  ;   $i    <=   sqrt  (  $n  );   $i  ++  )   {   if   (  $n   %   $i  ==  0  )   {   // If divisors are equal    // take only one of them   if   (  $n   /   $i   ==   $i  )   {   $sum   =   $sum   +   $i  ;   }   // Otherwise take both   else   {   $sum   =   $sum   +   $i  ;   $sum   =   $sum   +   (  $n   /   $i  );   }   }   }   return   $sum  ;   }   // Function to check   // Deficient Number   function   isDeficient  (  $n  )   {   // Check if sum(n)  < 2 * n   return   (  divisorsSum  (  $n  )    <   (  2   *   $n  ));   }   // Driver Code   $ds   =   isDeficient  (  12  )   ?   'YES  n  '   :   'NO  n  '  ;   echo  (  $ds  );   $ds   =   isDeficient  (  15  )   ?   'YES  n  '   :   'NO  n  '  ;   echo  (  $ds  );   // This code is contributed by ajit;.   ?>   
JavaScript
    <  script  >   // Javascript program to check Deficient Number      // Function to calculate sum of divisors      function     divisorsSum  (  n  )      {      let     sum     =     0  ;     // Initialize sum of prime factors          // Note that this loop runs till square root of n      for     (  let     i     =     1  ;     i      <=     (  Math  .  sqrt  (  n  ));     i  ++  )      {      if     (  n     %     i     ==     0  )         {          // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }          return     sum  ;      }          // Function to check Deficient Number      function     isDeficient  (  n  )      {          // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }   // Driver code to test above methods      if     (  isDeficient  (  12  ))      document  .  write  (  'YES'     +     '  
'
); else document . write ( 'NO' + '
'
); if ( isDeficient ( 15 )) document . write ( 'YES' + '
'
); else document . write ( 'NO' + '
'
); // This code is contributed by avijitmondal1998. < /script>

Çıkış:  
 

NO YES 


Zaman Karmaşıklığı: O( sqrt( n )) 
Yardımcı Alan : Ç(1)
Referanslar: 
https://en.wikipedia.org/wiki/Deficient_number