Program för att hitta alla Mersenne Primes till N

Program för att hitta alla Mersenne Primes till N
Prova det på GfG Practice

Mersenne Prime är ett primtal som är en mindre än en potens av två. Med andra ord är vilket primtal som helst Mersenne Prime om det har formen 2 k -1 där k är ett heltal större än eller lika med 2. De första Mersenne-primtalen är 3 7 31 och 127.
Uppgiften är att skriva ut alla Mersenne Primes mindre än ett inmatat positivt heltal n.
Exempel:  
 

    Input:     10   
Output: 3 7
3 and 7 are prime numbers smaller than or
equal to 10 and are of the form 2 k -1

Input: 100
Output: 3 7 31


 


Tanken är att generera alla primtal mindre än eller lika med det givna talet n med hjälp av Sil av Eratosthenes . När vi har genererat alla sådana primtal, itererar vi genom alla tal i formen 2 k -1 och kontrollera om de är primtal eller inte.
Nedan följer genomförandet av idén.
 

C++
   // Program to generate mersenne primes   #include       using     namespace     std  ;   // Generate all prime numbers less than n.   void     SieveOfEratosthenes  (  int     n       bool     prime  [])   {      // Initialize all entries of boolean array      // as true. A value in prime[i] will finally      // be false if i is Not a prime else true      // bool prime[n+1];      for     (  int     i  =  0  ;     i   <=  n  ;     i  ++  )      prime  [  i  ]     =     true  ;      for     (  int     p  =  2  ;     p  *  p   <=  n  ;     p  ++  )      {      // If prime[p] is not changed then it      // is a prime      if     (  prime  [  p  ]     ==     true  )      {      // Update all multiples of p      for     (  int     i  =  p  *  2  ;     i   <=  n  ;     i     +=     p  )      prime  [  i  ]     =     false  ;      }      }   }   // Function to generate mersenne primes less   // than or equal to n   void     mersennePrimes  (  int     n  )   {      // Create a boolean array 'prime[0..n]'      bool     prime  [  n  +  1  ];      // Generating primes using Sieve      SieveOfEratosthenes  (  n    prime  );      // Generate all numbers of the form 2^k - 1      // and smaller than or equal to n.      for     (  int     k  =  2  ;     ((  1   < <  k  )  -1  )      <=     n  ;     k  ++  )      {      long     long     num     =     (  1   < <  k  )     -     1  ;      // Checking whether number is prime and is      // one less than the power of 2      if     (  prime  [  num  ])      cout      < <     num      < <     ' '  ;      }   }   // Driven program   int     main  ()   {      int     n     =     31  ;      cout      < <     'Mersenne prime numbers smaller '       < <     'than or equal to '      < <     n      < <     endl  ;      mersennePrimes  (  n  );      return     0  ;   }   
Java
   // Program to generate   // mersenne primes   import     java.io.*  ;   class   GFG     {          // Generate all prime numbers      // less than n.      static     void     SieveOfEratosthenes  (  int     n        boolean     prime  []  )      {      // Initialize all entries of       // boolean array as true. A       // value in prime[i] will finally      // be false if i is Not a prime       // else true bool prime[n+1];      for     (  int     i     =     0  ;     i      <=     n  ;     i  ++  )      prime  [  i  ]     =     true  ;          for     (  int     p     =     2  ;     p     *     p      <=     n  ;     p  ++  )      {      // If prime[p] is not changed      //  then it is a prime      if     (  prime  [  p  ]     ==     true  )      {      // Update all multiples of p      for     (  int     i     =     p     *     2  ;     i      <=     n  ;     i     +=     p  )      prime  [  i  ]     =     false  ;      }      }      }          // Function to generate mersenne      // primes lessthan or equal to n      static     void     mersennePrimes  (  int     n  )      {      // Create a boolean array      // 'prime[0..n]'      boolean     prime  []=  new     boolean  [  n     +     1  ]  ;          // Generating primes       // using Sieve      SieveOfEratosthenes  (  n       prime  );          // Generate all numbers of      // the form 2^k - 1 and       // smaller than or equal to n.      for     (  int     k     =     2  ;     ((     1      < <     k  )     -     1  )      <=     n  ;     k  ++  )      {      long     num     =     (     1      < <     k  )     -     1  ;          // Checking whether number is       // prime and is one less than      // the power of 2      if     (  prime  [  (  int  )(  num  )  ]  )      System  .  out  .  print  (  num     +     ' '  );      }      }          // Driven program      public     static     void     main  (  String     args  []  )      {      int     n     =     31  ;      System  .  out  .  println  (  'Mersenne prime'  +      'numbers smaller than'  +      'or equal to '  +  n  );          mersennePrimes  (  n  );      }   }   // This code is contributed by Nikita Tiwari.   
Python3
   # Program to generate mersenne primes    # Generate all prime numbers   # less than n.    def   SieveOfEratosthenes  (  n     prime  ):   # Initialize all entries of boolean   # array as true. A value in prime[i]    # will finally be false if i is Not    # a prime else true bool prime[n+1]    for   i   in   range  (  0     n   +   1  )   :   prime  [  i  ]   =   True   p   =   2   while  (  p   *   p    <=   n  ):   # If prime[p] is not changed    # then it is a prime    if   (  prime  [  p  ]   ==   True  )   :   # Update all multiples of p    for   i   in   range  (  p   *   2     n   +   1     p  ):   prime  [  i  ]   =   False   p   +=   1   # Function to generate mersenne    # primes less than or equal to n    def   mersennePrimes  (  n  )   :   # Create a boolean array    # 'prime[0..n]'    prime   =   [  0  ]   *   (  n   +   1  )   # Generating primes using Sieve    SieveOfEratosthenes  (  n     prime  )   # Generate all numbers of the    # form 2^k - 1 and smaller   # than or equal to n.   k   =   2   while  (((  1    < <   k  )   -   1  )    <=   n   ):   num   =   (  1    < <   k  )   -   1   # Checking whether number    # is prime and is one   # less than the power of 2    if   (  prime  [  num  ])   :   print  (  num     end   =   ' '   )   k   +=   1   # Driver Code   n   =   31   print  (  'Mersenne prime numbers smaller'     'than or equal to '      n   )   mersennePrimes  (  n  )   # This code is contributed   # by Smitha   
C#
   // C# Program to generate mersenne primes   using     System  ;   class     GFG     {          // Generate all prime numbers less than n.      static     void     SieveOfEratosthenes  (  int     n        bool     []  prime  )      {          // Initialize all entries of       // boolean array as true. A       // value in prime[i] will finally      // be false if i is Not a prime       // else true bool prime[n+1];      for     (  int     i     =     0  ;     i      <=     n  ;     i  ++  )      prime  [  i  ]     =     true  ;          for     (  int     p     =     2  ;     p     *     p      <=     n  ;     p  ++  )      {          // If prime[p] is not changed      // then it is a prime      if     (  prime  [  p  ]     ==     true  )      {          // Update all multiples of p      for     (  int     i     =     p     *     2  ;     i      <=     n  ;     i     +=     p  )      prime  [  i  ]     =     false  ;      }      }      }          // Function to generate mersenne      // primes lessthan or equal to n      static     void     mersennePrimes  (  int     n  )      {          // Create a boolean array      // 'prime[0..n]'      bool     []  prime     =     new     bool  [  n     +     1  ];          // Generating primes       // using Sieve      SieveOfEratosthenes  (  n       prime  );          // Generate all numbers of      // the form 2^k - 1 and       // smaller than or equal to n.      for     (  int     k     =     2  ;     ((     1      < <     k  )     -     1  )      <=     n  ;     k  ++  )      {      long     num     =     (     1      < <     k  )     -     1  ;          // Checking whether number is       // prime and is one less than      // the power of 2      if     (  prime  [(  int  )(  num  )])      Console  .  Write  (  num     +     ' '  );      }      }          // Driven program      public     static     void     Main  ()      {      int     n     =     31  ;          Console  .  WriteLine  (  'Mersenne prime numbers'      +     ' smaller than or equal to '     +     n  );          mersennePrimes  (  n  );      }   }   // This code is contributed by nitin mittal.   
JavaScript
    <  script  >   // JavaScript to generate   // mersenne primes       // Generate all prime numbers      // less than n.      function     SieveOfEratosthenes  (     n        prime  )      {      // Initialize all entries of       // boolean array as true. A       // value in prime[i] will finally      // be false if i is Not a prime       // else true bool prime[n+1];      for     (  let     i     =     0  ;     i      <=     n  ;     i  ++  )      prime  [  i  ]     =     true  ;          for     (  let     p     =     2  ;     p     *     p      <=     n  ;     p  ++  )      {      // If prime[p] is not changed      //  then it is a prime      if     (  prime  [  p  ]     ==     true  )      {      // Update all multiples of p      for     (  let     i     =     p     *     2  ;     i      <=     n  ;     i     +=     p  )      prime  [  i  ]     =     false  ;      }      }      }          // Function to generate mersenne      // primes lessthan or equal to n      function     mersennePrimes  (  n  )      {      // Create a boolean array      // 'prime[0..n]'      let     prime  =  [];          // Generating primes       // using Sieve      SieveOfEratosthenes  (  n       prime  );          // Generate all numbers of      // the form 2^k - 1 and       // smaller than or equal to n.      for     (  let     k     =     2  ;     ((     1      < <     k  )     -     1  )      <=     n  ;     k  ++  )      {      let     num     =     (     1      < <     k  )     -     1  ;          // Checking whether number is       // prime and is one less than      // the power of 2      if     (  prime  [(  num  )])      document  .  write  (  num     +     ' '  );      }      }   // Driver Code      let     n     =     31  ;      document  .  write  (  'Mersenne prime'  +      'numbers smaller than'  +      'or equal to '  +  n     +     '  
'
); mersennePrimes ( n ); // This code is contributed by code_hunt. < /script>
PHP
      // Program to generate mersenne primes   // Generate all prime numbers less than n.   function   SieveOf  (  $n  )   {   // Initialize all entries of boolean    // array as true. A value in prime[i]   // will finally be false if i is Not   // a prime else true   $prime   =   array  (  $n   +   1  );   for   (  $i   =   0  ;   $i    <=   $n  ;   $i  ++  )   $prime  [  $i  ]   =   true  ;   for   (  $p   =   2  ;   $p   *   $p    <=   $n  ;   $p  ++  )   {   // If prime[p] is not changed    // then it is a prime   if   (  $prime  [  $p  ]   ==   true  )   {   // Update all multiples of p   for   (  $i   =   $p   *   2  ;   $i    <=   $n  ;   $i   +=   $p  )   $prime  [  $i  ]   =   false  ;   }   }   return   $prime  ;   }   // Function to generate mersenne    // primes less than or equal to n   function   mersennePrimes  (  $n  )   {   // Create a boolean array 'prime[0..n]'   // bool prime[n+1];   // Generating primes using Sieve   $prime   =   SieveOf  (  $n  );   // Generate all numbers of the    // form 2^k - 1 and smaller    // than or equal to n.   for   (  $k   =   2  ;   ((  1    < <   $k  )   -   1  )    <=   $n  ;   $k  ++  )   {   $num   =   (  1    < <   $k  )   -   1  ;   // Checking whether number is prime    // and is one less than the power of 2   if   (  $prime  [  $num  ])   echo   $num   .   ' '  ;   }   }   // Driver Code   $n   =   31  ;   echo   'Mersenne prime numbers smaller '   .   'than or equal to   $n   '   .   mersennePrimes  (  $n  );   // This code is contributed by mits   ?>   

Produktion:  
 

 Mersenne prime numbers smaller than or equal to 31   
3 7 31

Tidskomplexitet: O (n*log(logn))

Rymdkomplexitet: PÅ)


Referenser:  
https://en.wikipedia.org/wiki/Mersenne_prime
 

Skapa frågesport