Minsta avstånd att resa för att täcka alla intervaller

Minsta avstånd att resa för att täcka alla intervaller

Med tanke på många intervaller som avstånd och vår position. Vi måste hitta minsta avstånd att resa för att nå en sådan punkt som täcker alla intervall på en gång. 

Exempel:  

Input : Intervals = [(0 7) (2 14) (4 6)] Position = 3 Output : 1 We can reach position 4 by travelling distance 1 at which all intervals will be covered. So answer will be 1 Input : Intervals = [(1 2) (2 3) (3 4)] Position = 2 Output : -1 It is not possible to cover all intervals at once at any point Input : Intervals = [(1 2) (2 3) (1 4)] Position = 2 Output : 0 All Intervals are covered at current position only so no need travel and answer will be 0 All above examples are shown in below diagram. 

Minsta avstånd att resa för att täcka alla intervaller

Vi kan lösa detta problem genom att bara koncentrera oss på endpoints. Eftersom kravet är att täcka alla intervall genom att nå en punkt måste alla intervall dela en punkt för att svaret ska existera. Även intervallet med slutpunkten längst till vänster måste överlappa med intervallet längst till höger startpunkten. 
Först hittar vi startpunkten längst till höger och slutpunkten längst till vänster från alla intervaller. Sedan kan vi jämföra vår position med dessa punkter för att få resultatet som förklaras nedan: 

  1. Om denna startpunkt längst till höger är till höger om slutpunkt längst till vänster är det inte möjligt att täcka alla intervall samtidigt. (som i exempel 2)
  2. Om vår position är i mitten mellan till höger längst start och längst till vänster så finns det inget behov av att resa och alla intervall kommer endast att täckas av nuvarande position (som i exempel 3)
  3. Om vår position lämnas till båda punkterna måste vi resa upp till startpunkten längst till höger och om vår position är rätt till båda punkterna måste vi resa upp till slutpunkten längst till vänster.

Se diagrammet ovan för att förstå dessa fall. Som i det första exemplet är längst höger start 4 och vänster längst slut är 6 så vi måste nå 4 från nuvarande position 3 för att täcka alla intervall. 

Se koden nedan för en bättre förståelse.  

C++
   // C++ program to find minimum distance to    // travel to cover all intervals   #include          using     namespace     std  ;   // structure to store an interval   struct     Interval   {      int     start       end  ;      Interval  (  int     start       int     end  )     :     start  (  start  )         end  (  end  )      {}   };   // Method returns minimum distance to travel    // to cover all intervals   int     minDistanceToCoverIntervals  (  Interval     intervals  []         int     N       int     x  )   {      int     rightMostStart     =     INT_MIN  ;      int     leftMostEnd     =     INT_MAX  ;      // looping over all intervals to get right most      // start and left most end      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      if     (  rightMostStart      <     intervals  [  i  ].  start  )      rightMostStart     =     intervals  [  i  ].  start  ;      if     (  leftMostEnd     >     intervals  [  i  ].  end  )      leftMostEnd     =     intervals  [  i  ].  end  ;      }          int     res  ;      /* if rightmost start > leftmost end then all     intervals are not aligned and it is not     possible to cover all of them */      if     (  rightMostStart     >     leftMostEnd  )      res     =     -1  ;      // if x is in between rightmoststart and       // leftmostend then no need to travel any distance      else     if     (  rightMostStart      <=     x     &&     x      <=     leftMostEnd  )      res     =     0  ;          // choose minimum according to current position x       else      res     =     (  x      <     rightMostStart  )     ?     (  rightMostStart     -     x  )     :      (  x     -     leftMostEnd  );          return     res  ;   }   // Driver code to test above methods   int     main  ()   {      int     x     =     3  ;      Interval     intervals  []     =     {{  0       7  }     {  2       14  }     {  4       6  }};      int     N     =     sizeof  (  intervals  )     /     sizeof  (  intervals  [  0  ]);      int     res     =     minDistanceToCoverIntervals  (  intervals       N       x  );      if     (  res     ==     -1  )      cout      < <     'Not Possible to cover all intervals  n  '  ;      else      cout      < <     res      < <     endl  ;   }   
Java
   // Java program to find minimum distance    // to travel to cover all intervals   import     java.util.*  ;   class   GFG  {       // Structure to store an interval   static     class   Interval   {      int     start       end  ;      Interval  (  int     start       int     end  )      {      this  .  start     =     start  ;      this  .  end     =     end  ;      }   };   // Method returns minimum distance to   // travel to cover all intervals   static     int     minDistanceToCoverIntervals  (  Interval     intervals  []           int     N       int     x  )   {      int     rightMostStart     =     Integer  .  MIN_VALUE  ;      int     leftMostEnd     =     Integer  .  MAX_VALUE  ;          // Looping over all intervals to get       // right most start and left most end      for  (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      if     (  rightMostStart      <     intervals  [  i  ]  .  start  )      rightMostStart     =     intervals  [  i  ]  .  start  ;      if     (  leftMostEnd     >     intervals  [  i  ]  .  end  )      leftMostEnd     =     intervals  [  i  ]  .  end  ;      }          int     res  ;      // If rightmost start > leftmost end then       // all intervals are not aligned and it       // is not possible to cover all of them       if     (  rightMostStart     >     leftMostEnd  )      res     =     -  1  ;          // If x is in between rightmoststart and       // leftmostend then no need to travel       // any distance      else     if     (  rightMostStart      <=     x     &&         x      <=     leftMostEnd  )      res     =     0  ;          // Choose minimum according to       // current position x       else      res     =     (  x      <     rightMostStart  )     ?      (  rightMostStart     -     x  )     :      (  x     -     leftMostEnd  );          return     res  ;   }   // Driver code   public     static     void     main  (  String  []     args  )   {      int     x     =     3  ;      Interval     []  intervals     =     {     new     Interval  (  0       7  )         new     Interval  (  2       14  )      new     Interval  (  4       6  )     };      int     N     =     intervals  .  length  ;      int     res     =     minDistanceToCoverIntervals  (      intervals       N       x  );          if     (  res     ==     -  1  )      System  .  out  .  print  (  'Not Possible to '     +         'cover all intervalsn'  );      else      System  .  out  .  print  (  res     +     'n'  );   }   }   // This code is contributed by Rajput-Ji   
Python3
   # Python program to find minimum distance to   # travel to cover all intervals   # Method returns minimum distance to travel   # to cover all intervals   def   minDistanceToCoverIntervals  (  Intervals     N     x  ):   rightMostStart   =   Intervals  [  0  ][  0  ]   leftMostStart   =   Intervals  [  0  ][  1  ]   # looping over all intervals to get right most   # start and left most end   for   curr   in   Intervals  :   if   rightMostStart    <   curr  [  0  ]:   rightMostStart   =   curr  [  0  ]   if   leftMostStart   >   curr  [  1  ]:   leftMostStart   =   curr  [  1  ]   # if rightmost start > leftmost end then all   # intervals are not aligned and it is not   # possible to cover all of them   if   rightMostStart   >   leftMostStart  :   res   =   -  1   # if x is in between rightmoststart and   # leftmostend then no need to travel any distance   else   if   rightMostStart    <=   x   and   x    <=   leftMostStart  :   res   =   0   # choose minimum according to current position x   else  :   res   =   rightMostStart  -  x   if   x    <   rightMostStart   else   x  -  leftMostStart   return   res   # Driver code to test above methods   Intervals   =   [[  0     7  ]   [  2     14  ]   [  4     6  ]]   N   =   len  (  Intervals  )   x   =   3   res   =   minDistanceToCoverIntervals  (  Intervals     N     x  )   if   res   ==   -  1  :   print  (  'Not Possible to cover all intervals'  )   else  :   print  (  res  )   # This code is contributed by rj13to.   
C#
   // C# program to find minimum distance    // to travel to cover all intervals   using     System  ;   class     GFG  {       // Structure to store an interval   public     class     Interval   {      public     int     start       end  ;          public     Interval  (  int     start       int     end  )      {      this  .  start     =     start  ;      this  .  end     =     end  ;      }   };   // Method returns minimum distance to   // travel to cover all intervals   static     int     minDistanceToCoverIntervals  (      Interval     []  intervals       int     N       int     x  )   {      int     rightMostStart     =     int  .  MinValue  ;      int     leftMostEnd     =     int  .  MaxValue  ;          // Looping over all intervals to get       // right most start and left most end      for  (  int     i     =     0  ;     i      <     N  ;     i  ++  )      {      if     (  rightMostStart      <     intervals  [  i  ].  start  )      rightMostStart     =     intervals  [  i  ].  start  ;      if     (  leftMostEnd     >     intervals  [  i  ].  end  )      leftMostEnd     =     intervals  [  i  ].  end  ;      }          int     res  ;      // If rightmost start > leftmost end then       // all intervals are not aligned and it       // is not possible to cover all of them       if     (  rightMostStart     >     leftMostEnd  )      res     =     -  1  ;          // If x is in between rightmoststart and       // leftmostend then no need to travel       // any distance      else     if     (  rightMostStart      <=     x     &&         x      <=     leftMostEnd  )      res     =     0  ;          // Choose minimum according to       // current position x       else      res     =     (  x      <     rightMostStart  )     ?      (  rightMostStart     -     x  )     :      (  x     -     leftMostEnd  );          return     res  ;   }   // Driver code   public     static     void     Main  (  String  []     args  )   {      int     x     =     3  ;      Interval     []  intervals     =     {     new     Interval  (  0       7  )         new     Interval  (  2       14  )      new     Interval  (  4       6  )     };      int     N     =     intervals  .  Length  ;      int     res     =     minDistanceToCoverIntervals  (      intervals       N       x  );          if     (  res     ==     -  1  )      Console  .  Write  (  'Not Possible to '     +         'cover all intervalsn'  );      else      Console  .  Write  (  res     +     'n'  );   }   }   // This code is contributed by shikhasingrajput    
JavaScript
    <  script  >   // JavaScript program to find minimum distance to   // travel to cover all intervals   // Method returns minimum distance to travel   // to cover all intervals   function     minDistanceToCoverIntervals  (  Intervals       N       x  ){      let     rightMostStart     =     Intervals  [  0  ][  0  ]      let     leftMostStart     =     Intervals  [  0  ][  1  ]      // looping over all intervals to get right most      // start and left most end      for  (  let     curr     of     Intervals  ){      if  (  rightMostStart      <     curr  [  0  ])      rightMostStart     =     curr  [  0  ]      if  (  leftMostStart     >     curr  [  1  ])      leftMostStart     =     curr  [  1  ]      }      let     res  ;      // if rightmost start > leftmost end then all      // intervals are not aligned and it is not      // possible to cover all of them      if  (  rightMostStart     >     leftMostStart  )      res     =     -  1          // if x is in between rightmoststart and      // leftmostend then no need to travel any distance      else     if  (  rightMostStart      <=     x     &&     x      <=     leftMostStart  )      res     =     0          // choose minimum according to current position x      else      res     =     (  x      <     rightMostStart  )  ?  rightMostStart  -  x     :     x  -  leftMostStart      return     res   }   // Driver code to test above methods   let     Intervals     =     [[  0       7  ]     [  2       14  ]     [  4       6  ]]   let     N     =     Intervals  .  length   let     x     =     3   let     res     =     minDistanceToCoverIntervals  (  Intervals       N       x  )   if  (  res     ==     -  1  )      document  .  write  (  'Not Possible to cover all intervals'    '  
'
) else document . write ( res ) // This code is contributed by shinjanpatra < /script>

Produktion: 

1 

Tidskomplexitet: PÅ)

Hjälputrymme: PÅ)
 

Skapa frågesport