Најмањи број са датом цифром и збројем
С обзиром на два цела броја с и д нађи најмањи могући број који тачно има Д цифре и а збир цифара једнакост с .
Вратите број као нагнути . Ако не постоји такав број, вратите се '-1' .
Примери:
Улаз: с = 9 д = 2
Излаз: 18
Објашњење: 18 је најмањи могући број са збројем цифара = 9 и укупних цифара = 2.Улаз: с = 20 д = 3
Излаз: 299
Објашњење: 299 је најмањи могући број са збројем цифара = 20 и укупних цифара = 3.Улаз: с = 1 д = 1
Излаз: 1
Објашњење: 1 је најмањи могући број са збројем цифара = 1 и укупне цифре = 1.
Табела садржаја
- [Бруте-Форце Приступ] ИТЕРЕЦХЕ РЕДЦХЕЕНТЛИ - О (Д * (10 ^ Д) Време и О (1) Простор
- [Очекивани приступ] коришћењем похлепне технике - о (д) време и о (1) простора
[Бруте-Форце Приступ] ИТЕРЕЦХЕ РЕДЦХЕЕНТЛИ - О (Д * (10 ^ Д) Време и О (1) Простор
C++Пошто је бројеви секвенцијални Приступ грубим силом итерата од најмањи Д-цифрени број на највећи Провера сваког. За сваки број израчунамо збир његових цифара и вратите први валидни меч који осигурава да је изабран најмањи могући број. Ако не постоји важећи број, враћамо се '-1' .
// C++ program to find the smallest d-digit // number with the given sum using // a brute force approach #include using namespace std ; string smallestNumber ( int s int d ) { // The smallest d-digit number is 10^(d-1) int start = pow ( 10 d - 1 ); // The largest d-digit number is 10^d - 1 int end = pow ( 10 d ) - 1 ; // Iterate through all d-digit numbers for ( int num = start ; num <= end ; num ++ ) { int sum = 0 x = num ; // Calculate sum of digits while ( x > 0 ) { sum += x % 10 ; x /= 10 ; } // If sum matches return the number // as a string if ( sum == s ) { return to_string ( num ); } } // If no valid number is found return '-1' return '-1' ; } // Driver Code int main () { int s = 9 d = 2 ; cout < < smallestNumber ( s d ) < < endl ; return 0 ; }
Java // Java program to find the smallest d-digit // number with the given sum using // a brute force approach import java.util.* ; class GfG { static String smallestNumber ( int s int d ) { // The smallest d-digit number is 10^(d-1) int start = ( int ) Math . pow ( 10 d - 1 ); // The largest d-digit number is 10^d - 1 int end = ( int ) Math . pow ( 10 d ) - 1 ; // Iterate through all d-digit numbers for ( int num = start ; num <= end ; num ++ ) { int sum = 0 x = num ; // Calculate sum of digits while ( x > 0 ) { sum += x % 10 ; x /= 10 ; } // If sum matches return the number // as a string if ( sum == s ) { return Integer . toString ( num ); } } // If no valid number is found return '-1' return '-1' ; } // Driver Code public static void main ( String [] args ) { int s = 9 d = 2 ; System . out . println ( smallestNumber ( s d )); } }
Python # Python program to find the smallest d-digit # number with the given sum using # a brute force approach def smallestNumber ( s d ): # The smallest d-digit number is 10^(d-1) start = 10 ** ( d - 1 ) # The largest d-digit number is 10^d - 1 end = 10 ** d - 1 # Iterate through all d-digit numbers for num in range ( start end + 1 ): sum_digits = 0 x = num # Calculate sum of digits while x > 0 : sum_digits += x % 10 x //= 10 # If sum matches return the number # as a string if sum_digits == s : return str ( num ) # If no valid number is found return '-1' return '-1' # Driver Code if __name__ == '__main__' : s d = 9 2 print ( smallestNumber ( s d ))
C# // C# program to find the smallest d-digit // number with the given sum using // a brute force approach using System ; class GfG { static string smallestNumber ( int s int d ) { // The smallest d-digit number is 10^(d-1) int start = ( int ) Math . Pow ( 10 d - 1 ); // The largest d-digit number is 10^d - 1 int end = ( int ) Math . Pow ( 10 d ) - 1 ; // Iterate through all d-digit numbers for ( int num = start ; num <= end ; num ++ ) { int sum = 0 x = num ; // Calculate sum of digits while ( x > 0 ) { sum += x % 10 ; x /= 10 ; } // If sum matches return the number // as a string if ( sum == s ) { return num . ToString (); } } // If no valid number is found return '-1' return '-1' ; } // Driver Code public static void Main () { int s = 9 d = 2 ; Console . WriteLine ( smallestNumber ( s d )); } }
JavaScript // JavaScript program to find the smallest d-digit // number with the given sum using // a brute force approach function smallestNumber ( s d ) { // The smallest d-digit number is 10^(d-1) let start = Math . pow ( 10 d - 1 ); // The largest d-digit number is 10^d - 1 let end = Math . pow ( 10 d ) - 1 ; // Iterate through all d-digit numbers for ( let num = start ; num <= end ; num ++ ) { let sum = 0 x = num ; // Calculate sum of digits while ( x > 0 ) { sum += x % 10 ; x = Math . floor ( x / 10 ); } // If sum matches return the number // as a string if ( sum === s ) { return num . toString (); } } // If no valid number is found return '-1' return '-1' ; } // Driver Code let s = 9 d = 2 ; console . log ( smallestNumber ( s d ));
Излаз
18
[Очекивани приступ] коришћењем похлепне технике - о (д) време и о (1) простора
Приступ осигурава лепу тежину је не-нула па ми Резервишите 1 за то и дистрибуирајте преосталу суму од право на лево да формирају најмањи могући број. Тхе похлепни приступ помаже у постављању највећих могућих вредности (до 9) на десничарни положаји да држи број малих.
Кораци за спровођење горе наведене идеје:
- Проверите ограничења да бисте осигурали Важећа сума С може се формирати коришћењем Д цифре иначе се вратите '-1' .
- Иницијализовати резултат као низ д '0-их и Резервишите 1 за то Љевидашња цифра смањењем с 1 .
- Прећи од право на лево и ставите највећа могућа цифра ( <= 9) док се ажурира с у складу с тим.
- Ако с <= 9 ставите његову вредност на тренутни положај и поставите с = 0 да заустави додатна ажурирања.
- Доделити Љевидашња цифра додавањем преостали Да би се осигурало да остане не-нула .
- Претворити резултат низ до траженог формата и вратити се то као коначни излаз.
// C++ program to find the smallest d-digit // number with the given sum using // Greedy Technique #include using namespace std ; string smallestNumber ( int s int d ) { // If sum is too small or too large // for d digits if ( s < 1 || s > 9 * d ) { return '-1' ; } string result ( d '0' ); // Reserve 1 for the leftmost digit s -- ; // Fill digits from right to left for ( int i = d - 1 ; i > 0 ; i -- ) { // Place the largest possible value <= 9 if ( s > 9 ) { result [ i ] = '9' ; s -= 9 ; } else { result [ i ] = '0' + s ; s = 0 ; } } // Place the leftmost digit ensuring // it's non-zero result [ 0 ] = '1' + s ; return result ; } // Driver Code int main () { int s = 9 d = 2 ; cout < < smallestNumber ( s d ) < < endl ; return 0 ; }
Java // Java program to find the smallest d-digit // number with the given sum using // Greedy Technique import java.util.* ; class GfG { static String smallestNumber ( int s int d ) { // If sum is too small or too large // for d digits if ( s < 1 || s > 9 * d ) { return '-1' ; } char [] result = new char [ d ] ; Arrays . fill ( result '0' ); // Reserve 1 for the leftmost digit s -- ; // Fill digits from right to left for ( int i = d - 1 ; i > 0 ; i -- ) { // Place the largest possible value <= 9 if ( s > 9 ) { result [ i ] = '9' ; s -= 9 ; } else { result [ i ] = ( char ) ( '0' + s ); s = 0 ; } } // Place the leftmost digit ensuring // it's non-zero result [ 0 ] = ( char ) ( '1' + s ); return new String ( result ); } // Driver Code public static void main ( String [] args ) { int s = 9 d = 2 ; System . out . println ( smallestNumber ( s d )); } }
Python # Python program to find the smallest d-digit # number with the given sum using # Greedy Technique def smallestNumber ( s d ): # If sum is too small or too large # for d digits if s < 1 or s > 9 * d : return '-1' result = [ '0' ] * d # Reserve 1 for the leftmost digit s -= 1 # Fill digits from right to left for i in range ( d - 1 0 - 1 ): # Place the largest possible value <= 9 if s > 9 : result [ i ] = '9' s -= 9 else : result [ i ] = str ( s ) s = 0 # Place the leftmost digit ensuring # it's non-zero result [ 0 ] = str ( 1 + s ) return '' . join ( result ) # Driver Code if __name__ == '__main__' : s d = 9 2 print ( smallestNumber ( s d ))
C# // C# program to find the smallest d-digit // number with the given sum using // Greedy Technique using System ; class GfG { static string smallestNumber ( int s int d ) { // If sum is too small or too large // for d digits if ( s < 1 || s > 9 * d ) { return '-1' ; } char [] result = new char [ d ]; Array . Fill ( result '0' ); // Reserve 1 for the leftmost digit s -- ; // Fill digits from right to left for ( int i = d - 1 ; i > 0 ; i -- ) { // Place the largest possible value <= 9 if ( s > 9 ) { result [ i ] = '9' ; s -= 9 ; } else { result [ i ] = ( char ) ( '0' + s ); s = 0 ; } } // Place the leftmost digit ensuring // it's non-zero result [ 0 ] = ( char ) ( '1' + s ); return new string ( result ); } // Driver Code static void Main () { int s = 9 d = 2 ; Console . WriteLine ( smallestNumber ( s d )); } }
JavaScript // JavaScript program to find the smallest d-digit // number with the given sum using // Greedy Technique function smallestNumber ( s d ) { // If sum is too small or too large // for d digits if ( s < 1 || s > 9 * d ) { return '-1' ; } let result = Array ( d ). fill ( '0' ); // Reserve 1 for the leftmost digit s -- ; // Fill digits from right to left for ( let i = d - 1 ; i > 0 ; i -- ) { // Place the largest possible value <= 9 if ( s > 9 ) { result [ i ] = '9' ; s -= 9 ; } else { result [ i ] = String ( s ); s = 0 ; } } // Place the leftmost digit ensuring // it's non-zero result [ 0 ] = String ( 1 + s ); return result . join ( '' ); } // Driver Code let s = 9 d = 2 ; console . log ( smallestNumber ( s d ));
Излаз
18