Пронађите најкраћи сигуран пут на стази са минама

Пронађите најкраћи сигуран пут на стази са минама
Пробајте на ГфГ пракси улазна_матрица

Задата је правоугаона матрица mat[][] где неке ћелије садрже нагазне мине (означене са 0), а остале су безбедне (означене са 1) пронађите дужину најкраћег безбедног пута од било које ћелије у првој колони до било које ћелије у последњој колони.

  • Нагазне мине нису безбедне и њихове четири суседне ћелије (горе доле лево десно) такође нису безбедне.
  • Дозвољени су само хоризонтални и вертикални покрети до суседних сигурних ћелија.
  • Ако је немогуће безбедно доћи до последње колоне вратите -1.

Примери:  

Улаз:
са [][] = [ [1 0 1 1 1]
[1 1 1 1]
[1 1 1 1]
[1 1 1 0 1]
[1 1 1 1 0] ]
Излаз: 6
Објашњење:

Видимо ту дужину најкраће
сигуран пут је 6.

Улаз:
са [][] = [ [1 1 1 1 1]
[1 1 0 1 1]
[1 1 1 1] ]
Излаз: -1
Објашњење: Не постоји могућ пут од
од прве до последње колоне.

Садржај

[Приступ] Коришћење праћења уназад

Идеја је да се користи Бацктрацкинг . Прво означавамо све суседне ћелије нагазних мина као небезбедне. Затим за сваку безбедну ћелију прве колоне матрице крећемо напред у свим дозвољеним правцима и рекурзивно проверава да ли воде до одредишта или не. Ако се пронађе одредиште, ажурирамо вредност најкраће путање, иначе ако ниједно од горе наведених решења не функционише, враћамо фалсе из наше функције.

C++
   #include          #include         #include         #include          using     namespace     std  ;   // Function to mark unsafe cells (landmines and their adjacent cells)   void     markUnsafeCells  (  vector   <  vector   <  int  >>     &  mat  )     {      int     r     =     mat  .  size  ();      int     c     =     mat  [  0  ].  size  ();          // Directions for adjacent cells: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          vector   <  vector   <  int  >>     temp     =     mat  ;          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }   }   // DFS to find shortest path from (i j) to any cell in last column   int     dfs  (  vector   <  vector   <  int  >>     &  mat       vector   <  vector   <  bool  >>     &  visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  size  ();          if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     INT_MAX  ;      }          if     (  j     ==     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;          // Four possible moves: up down left right      int     row  []     =     {  -1       1       0       0  };      int     col  []     =     {  0       0       -1       1  };          int     minPath     =     INT_MAX  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     INT_MAX  )     {      minPath     =     min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;   }   int     findShortestPath  (  vector   <  vector   <  int  >>     &  mat  )     {      int     r     =     mat  .  size  ();      int     c     =     mat  [  0  ].  size  ();          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          // Initialize visited array      vector   <  vector   <  bool  >>     visited  (  r       vector   <  bool  >  (  c       false  ));          int     minPath     =     INT_MAX  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     INT_MAX  )     {      minPath     =     min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     INT_MAX     ?     -1     :     minPath  ;   }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          int     result     =     findShortestPath  (  mat  );      cout      < <     result      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.Arrays  ;   class   Solution     {      // Function to mark unsafe cells (landmines and their adjacent cells)      private     void     markUnsafeCells  (  int  [][]     mat  )     {      int     r     =     mat  .  length  ;      int     c     =     mat  [  0  ]  .  length  ;              int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          // Create a copy to avoid modifying original safe cells prematurely      int  [][]     temp     =     new     int  [  r  ][  c  ]  ;      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      temp  [  i  ][  j  ]     =     mat  [  i  ][  j  ]  ;      }      }          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }      }          // DFS to find shortest path from (i j) to any cell in last column      private     int     dfs  (  int  [][]     mat       boolean  [][]     visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ]  )     {      return     Integer  .  MAX_VALUE  ;      }      if     (  j     ==     c     -     1  )     {      return     1  ;      }      visited  [  i  ][  j  ]     =     true  ;          int  []     row     =     {  -  1       1       0       0  };      int  []     col     =     {  0       0       -  1       1  };          int     minPath     =     Integer  .  MAX_VALUE  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ]  ;      int     nj     =     j     +     col  [  k  ]  ;          int     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     Integer  .  MAX_VALUE  )     {      minPath     =     Math  .  min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;      }          public     int     findShortestPath  (  int  [][]     mat  )     {      int     r     =     mat  .  length  ;      int     c     =     mat  [  0  ]  .  length  ;          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          boolean  [][]     visited     =     new     boolean  [  r  ][  c  ]  ;          int     minPath     =     Integer  .  MAX_VALUE  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     Integer  .  MAX_VALUE  )     {      minPath     =     Math  .  min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     Integer  .  MAX_VALUE     ?     -  1     :     minPath  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          Solution     solution     =     new     Solution  ();      int     result     =     solution  .  findShortestPath  (  mat  );      System  .  out  .  println  (  result  );      }   }   
Python
   # Function to mark unsafe cells (landmines and their adjacent cells)   def   mark_unsafe_cells  (  mat  ):   r   =   len  (  mat  )   c   =   len  (  mat  [  0  ])   # Directions for adjacent cells: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   # Create a copy to avoid modifying original safe cells prematurely   temp   =   [  row  [:]   for   row   in   mat  ]   # Mark adjacent cells of landmines (0) as unsafe (0)   for   i   in   range  (  r  ):   for   j   in   range  (  c  ):   if   temp  [  i  ][  j  ]   ==   0  :   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   if   0    <=   ni    <   r   and   0    <=   nj    <   c  :   mat  [  ni  ][  nj  ]   =   0   # DFS to find shortest path from (i j) to any cell in last column   def   dfs  (  mat     visited     i     j     c  ):   r   =   len  (  mat  )   # If out of bounds blocked or visited   if   i    <   0   or   i   >=   r   or   j    <   0   or   j   >=   c   or   mat  [  i  ][  j  ]   ==   0   or   visited  [  i  ][  j  ]:   return   float  (  'inf'  )   if   j   ==   c   -   1  :   return   1   visited  [  i  ][  j  ]   =   True   # Four possible moves: up down left right   row   =   [  -  1     1     0     0  ]   col   =   [  0     0     -  1     1  ]   min_path   =   float  (  'inf'  )   # Try all four directions   for   k   in   range  (  4  ):   ni   =   i   +   row  [  k  ]   nj   =   j   +   col  [  k  ]   path_length   =   dfs  (  mat     visited     ni     nj     c  )   if   path_length   !=   float  (  'inf'  ):   min_path   =   min  (  min_path     1   +   path_length  )   # Backtrack - unmark current cell   visited  [  i  ][  j  ]   =   False   return   min_path   def   findShortestPath  (  mat  ):   r   =   len  (  mat  )   c   =   len  (  mat  [  0  ])   # Mark all adjacent cells of landmines as unsafe   mark_unsafe_cells  (  mat  )   visited   =   [[  False  ]   *   c   for   _   in   range  (  r  )]   min_path   =   float  (  'inf'  )   # Try starting from each safe cell in the first column   for   i   in   range  (  r  ):   if   mat  [  i  ][  0  ]   ==   1  :   path_length   =   dfs  (  mat     visited     i     0     c  )   if   path_length   !=   float  (  'inf'  ):   min_path   =   min  (  min_path     path_length  )   return   -  1   if   min_path   ==   float  (  'inf'  )   else   min_path   def   main  ():   mat   =   [   [  1     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  1     1     1     1     0  ]   ]   result   =   findShortestPath  (  mat  )   print  (  result  )   if   __name__   ==   '__main__'  :   main  ()   
C#
   using     System  ;   class     GFG     {      // Function to mark unsafe cells (landmines and their adjacent cells)      private     void     MarkUnsafeCells  (  int  [][]     mat  )     {      int     r     =     mat  .  Length  ;      int     c     =     mat  [  0  ].  Length  ;          // Directions for adjacent cells: up down left right      int  []     row     =     {     -  1       1       0       0     };      int  []     col     =     {     0       0       -  1       1     };          // Create a copy to avoid modifying original safe cells prematurely      int  [][]     temp     =     new     int  [  r  ][];      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      temp  [  i  ]     =     new     int  [  c  ];      Array  .  Copy  (  mat  [  i  ]     temp  [  i  ]     c  );      }          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ==     0  )     {      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }      }          // DFS to find shortest path from (i j) to any cell in last column      private     int     Dfs  (  int  [][]     mat       bool  [][]     visited       int     i       int     j       int     c  )     {      int     r     =     mat  .  Length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ==     0     ||     visited  [  i  ][  j  ])     {      return     int  .  MaxValue  ;      }          if     (  j     ==     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;      int  []     row     =     {     -  1       1       0       0     };      int  []     col     =     {     0       0       -  1       1     };          int     minPath     =     int  .  MaxValue  ;          // Try all four directions      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     row  [  k  ];      int     nj     =     j     +     col  [  k  ];          int     pathLength     =     Dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !=     int  .  MaxValue  )     {      minPath     =     Math  .  Min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;      }          public     int     FindShortestPath  (  int  [][]     mat  )     {      int     r     =     mat  .  Length  ;      int     c     =     mat  [  0  ].  Length  ;          // Mark all adjacent cells of landmines as unsafe      MarkUnsafeCells  (  mat  );          bool  [][]     visited     =     new     bool  [  r  ][];      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      visited  [  i  ]     =     new     bool  [  c  ];      }          int     minPath     =     int  .  MaxValue  ;          // Try starting from each safe cell in the first column      for     (  int     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ==     1  )     {      int     pathLength     =     Dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !=     int  .  MaxValue  )     {      minPath     =     Math  .  Min  (  minPath       pathLength  );      }      }      }          return     minPath     ==     int  .  MaxValue     ?     -  1     :     minPath  ;      }      static     void     Main  (  string  []     args  )     {      int  [][]     mat     =     new     int  [][]     {      new     int  []     {     1       0       1       1       1     }      new     int  []     {     1       1       1       1       1     }      new     int  []     {     1       1       1       1       1     }      new     int  []     {     1       1       1       0       1     }      new     int  []     {     1       1       1       1       0     }      };          GFG     solution     =     new     GFG  ();      int     result     =     solution  .  FindShortestPath  (  mat  );      Console  .  WriteLine  (  result  );      }   }   
JavaScript
   function     markUnsafeCells  (  mat  )     {      const     r     =     mat  .  length  ;      const     c     =     mat  [  0  ].  length  ;          // Directions for adjacent cells: up down left right      const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          // Create a copy to avoid modifying original safe cells prematurely      const     temp     =     mat  .  map  (  row     =>     [...  row  ]);          // Mark adjacent cells of landmines (0) as unsafe (0)      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      for     (  let     j     =     0  ;     j      <     c  ;     j  ++  )     {      if     (  temp  [  i  ][  j  ]     ===     0  )     {      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];      if     (  ni     >=     0     &&     ni      <     r     &&     nj     >=     0     &&     nj      <     c  )     {      mat  [  ni  ][  nj  ]     =     0  ;      }      }      }      }      }   }   function     dfs  (  mat       visited       i       j       c  )     {      const     r     =     mat  .  length  ;          // If out of bounds blocked or visited      if     (  i      <     0     ||     i     >=     r     ||     j      <     0     ||     j     >=     c     ||     mat  [  i  ][  j  ]     ===     0     ||     visited  [  i  ][  j  ])     {      return     Infinity  ;      }          // If reached the last column      if     (  j     ===     c     -     1  )     {      return     1  ;      }          visited  [  i  ][  j  ]     =     true  ;          const     row     =     [  -  1       1       0       0  ];      const     col     =     [  0       0       -  1       1  ];          let     minPath     =     Infinity  ;          // Try all four directions      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      const     ni     =     i     +     row  [  k  ];      const     nj     =     j     +     col  [  k  ];          const     pathLength     =     dfs  (  mat       visited       ni       nj       c  );      if     (  pathLength     !==     Infinity  )     {      minPath     =     Math  .  min  (  minPath       1     +     pathLength  );      }      }          // Backtrack - unmark current cell      visited  [  i  ][  j  ]     =     false  ;          return     minPath  ;   }   function     findShortestPath  (  mat  )     {      const     r     =     mat  .  length  ;      const     c     =     mat  [  0  ].  length  ;          // Mark all adjacent cells of landmines as unsafe      markUnsafeCells  (  mat  );          const     visited     =     Array  (  r  ).  fill  ().  map  (()     =>     Array  (  c  ).  fill  (  false  ));          let     minPath     =     Infinity  ;          // Try starting from each safe cell in the first column      for     (  let     i     =     0  ;     i      <     r  ;     i  ++  )     {      if     (  mat  [  i  ][  0  ]     ===     1  )     {      const     pathLength     =     dfs  (  mat       visited       i       0       c  );      if     (  pathLength     !==     Infinity  )     {      minPath     =     Math  .  min  (  minPath       pathLength  );      }      }      }          return     minPath     ===     Infinity     ?     -  1     :     minPath  ;   }   const     mat     =     [      [  1       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  1       1       1       1       0  ]   ];   const     result     =     findShortestPath  (  mat  );   console  .  log  (  result  );   

Излаз
6  

Временска сложеност: О(4^(р * ц)) где је р број редова, а ц број колона у датој матрици.
Помоћни простор: О (р * ц) пошто користимо додатни простор као што је вистед[р][ц].

[Оптимизовани приступ] Коришћење претраге у ширину

Може се решити у полиномском времену коришћењем претраге у ширину. Ставите све безбедне ћелије из последње колоне у ред са растојањем = 1. Како БФС напредује, израчунава се најкраћи пут до сваке ћелије из последње колоне. Коначно међу свим доступним ћелијама у првој колони испишите минималну удаљеност.

C++
   #include          #include         #include          #include         #include         #include             using     namespace     std  ;      int     rowNum  [  4  ]     =     {  -1       0       0       1  };         int     colNum  [  4  ]     =     {  0       -1       1       0  };             int     findShortestPath  (  vector   <  vector   <  int  >>     &  mat  )      {      int     n     =     mat  .  size  ();         int     m     =     mat  [  0  ].  size  ();             queue   <  array   <  int    3  >>     q  ;     // Queue to perform BFS          int     d  [  n  ][  m  ];                 for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for  (  int     j     =     0  ;     j      <     m  ;     j  ++  )      d  [  i  ][  j  ]     =     1e9  ;          // Lambda function to check if cell is valid      auto     isValid     =     [  &  ](  int     i       int     j  )     {      if  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  )     return     false  ;      return     true  ;      };          // Lambda function to check if cell and its adjacent cells are safe      auto     check     =     [  &  ](  int     i       int     j  )     {      if  (  !  isValid  (  i       j  ))     return     false  ;      for  (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      if  (  isValid  (  i     +     rowNum  [  k  ]     j     +     colNum  [  k  ])     &&     !  mat  [  i     +     rowNum  [  k  ]][  j     +     colNum  [  k  ]])     return     false  ;      }      return     true  ;      };          // Pushing cells from the rightmost column into the queue      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      if  (  check  (  i       m     -     1  ))     {      q  .  push  ({  i       m     -     1       1  });      }      }          // BFS traversal      while  (  !  q  .  empty  ())     {      auto     z     =     q  .  front  ();      int     x     =     z  [  0  ]     y     =     z  [  1  ]     dis     =     z  [  2  ];      q  .  pop  ();      if  (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for  (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      if  (  check  (  x     +     rowNum  [  k  ]     y     +     colNum  [  k  ]))     {      q  .  push  ({  x     +     rowNum  [  k  ]     y     +     colNum  [  k  ]     dis     +     1  });      }      }      }      }          // Finding the minimum distance in the first column      int     ans     =     1e9  ;      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )      ans     =     min  (  ans       d  [  i  ][  0  ]);          // If no safe path found return -1      if  (  ans     >=     1e9  )     ans     =     -1  ;      return     ans  ;      }   int     main  ()     {      vector   <  vector   <  int  >>     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };          int     result     =     findShortestPath  (  mat  );      cout      < <     result      < <     endl  ;          return     0  ;   }   
Java
   import     java.util.*  ;   public     class   Solution     {      static     int  []     rowNum     =     {  -  1       0       0       1  };      static     int  []     colNum     =     {  0       -  1       1       0  };      public     static     int     findShortestPath  (  int  [][]     mat  )     {      int     n     =     mat  .  length  ;      int     m     =     mat  [  0  ]  .  length  ;      Queue   <  int  []>     q     =     new     LinkedList   <>  ();      int  [][]     d     =     new     int  [  n  ][  m  ]  ;      // Initializing distance array with large values      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      Arrays  .  fill  (  d  [  i  ]       (  int  )     1e9  );      }      // Lambda-like helper function: check if cell is valid      java  .  util  .  function  .  BiFunction   <  Integer       Integer       Boolean  >     isValid     =     (  i       j  )     ->     {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      };      // Helper function: check if cell and adjacent cells are safe      java  .  util  .  function  .  BiFunction   <  Integer       Integer       Boolean  >     check     =     (  i       j  )     ->     {      if     (  !  isValid  .  apply  (  i       j  ))     return     false  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     i     +     rowNum  [  k  ]  ;      int     nj     =     j     +     colNum  [  k  ]  ;      if     (  isValid  .  apply  (  ni       nj  )     &&     mat  [  ni  ][  nj  ]     ==     0  )     return     false  ;      }      return     true  ;      };      // Pushing cells from the rightmost column into the queue      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      if     (  check  .  apply  (  i       m     -     1  ))     {      q  .  add  (  new     int  []  {  i       m     -     1       1  });      }      }      // BFS traversal      while     (  !  q  .  isEmpty  ())     {      int  []     z     =     q  .  poll  ();      int     x     =     z  [  0  ]       y     =     z  [  1  ]       dis     =     z  [  2  ]  ;      if     (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )     {      int     ni     =     x     +     rowNum  [  k  ]  ;      int     nj     =     y     +     colNum  [  k  ]  ;      if     (  check  .  apply  (  ni       nj  ))     {      q  .  add  (  new     int  []  {  ni       nj       dis     +     1  });      }      }      }      }      // Finding the minimum distance in the first column      int     ans     =     (  int  )     1e9  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans     =     Math  .  min  (  ans       d  [  i  ][  0  ]  );      }      // If no safe path found return -1      if     (  ans     >=     1e9  )     ans     =     -  1  ;      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     mat     =     {      {  1       0       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       1       1  }      {  1       1       1       0       1  }      {  1       1       1       1       0  }      };      int     result     =     findShortestPath  (  mat  );      System  .  out  .  println  (  result  );      }   }   
Python
   from   collections   import   deque   rowNum   =   [  -  1     0     0     1  ]   colNum   =   [  0     -  1     1     0  ]   def   findShortestPath  (  mat  ):   n   =   len  (  mat  )   m   =   len  (  mat  [  0  ])   q   =   deque  ()   d   =   [[  10  **  9   for   _   in   range  (  m  )]   for   _   in   range  (  n  )]   # Check if cell is valid   def   isValid  (  i     j  ):   return   not   (  i    <   0   or   i   >=   n   or   j    <   0   or   j   >=   m  )   # Check if cell and its adjacent cells are safe   def   check  (  i     j  ):   if   not   isValid  (  i     j  ):   return   False   for   k   in   range  (  4  ):   ni     nj   =   i   +   rowNum  [  k  ]   j   +   colNum  [  k  ]   if   isValid  (  ni     nj  )   and   mat  [  ni  ][  nj  ]   ==   0  :   return   False   return   True   # Pushing cells from the rightmost column into the queue   for   i   in   range  (  n  ):   if   check  (  i     m   -   1  ):   q  .  append  ((  i     m   -   1     1  ))   # BFS traversal   while   q  :   x     y     dis   =   q  .  popleft  ()   if   d  [  x  ][  y  ]   >   dis  :   d  [  x  ][  y  ]   =   dis   for   k   in   range  (  4  ):   ni     nj   =   x   +   rowNum  [  k  ]   y   +   colNum  [  k  ]   if   check  (  ni     nj  ):   q  .  append  ((  ni     nj     dis   +   1  ))   # Finding the minimum distance in the first column   ans   =   min  (  d  [  i  ][  0  ]   for   i   in   range  (  n  ))   # If no safe path found return -1   if   ans   >=   10  **  9  :   ans   =   -  1   return   ans   if   __name__   ==   '__main__'  :   mat   =   [   [  1     0     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     1     1  ]   [  1     1     1     0     1  ]   [  1     1     1     1     0  ]   ]   result   =   findShortestPath  (  mat  )   print  (  result  )   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     Solution   {      static     int  []     rowNum     =     {     -  1       0       0       1     };      static     int  []     colNum     =     {     0       -  1       1       0     };      // Check if cell is valid      static     bool     IsValid  (  int     i       int     j       int     n       int     m  )      {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      }      // Check if cell and its adjacent cells are safe      static     bool     Check  (  int     i       int     j       int  [][]     mat       int     n       int     m  )      {      if     (  !  IsValid  (  i       j       n       m  ))     return     false  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     i     +     rowNum  [  k  ];      int     nj     =     j     +     colNum  [  k  ];      if     (  IsValid  (  ni       nj       n       m  )     &&     mat  [  ni  ][  nj  ]     ==     0  )     return     false  ;      }      return     true  ;      }      public     static     int     FindShortestPath  (  int  [][]     mat  )      {      int     n     =     mat  .  Length  ;      int     m     =     mat  [  0  ].  Length  ;      Queue   <  (  int       int       int  )  >     q     =     new     Queue   <  (  int       int       int  )  >  ();      int  []     d     =     new     int  [  n       m  ];      // Initialize distance array with large value      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      for     (  int     j     =     0  ;     j      <     m  ;     j  ++  )      d  [  i       j  ]     =     int  .  MaxValue     /     2  ;      // Push safe cells from rightmost column      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {      if     (  Check  (  i       m     -     1       mat       n       m  ))      {      q  .  Enqueue  ((  i       m     -     1       1  ));      }      }      // BFS traversal      while     (  q  .  Count     >     0  )      {      var     (  x       y       dis  )     =     q  .  Dequeue  ();      if     (  d  [  x       y  ]     >     dis  )      {      d  [  x       y  ]     =     dis  ;      for     (  int     k     =     0  ;     k      <     4  ;     k  ++  )      {      int     ni     =     x     +     rowNum  [  k  ];      int     nj     =     y     +     colNum  [  k  ];      if     (  Check  (  ni       nj       mat       n       m  ))      {      q  .  Enqueue  ((  ni       nj       dis     +     1  ));      }      }      }      }      // Find minimum distance in the first column      int     ans     =     int  .  MaxValue     /     2  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      ans     =     Math  .  Min  (  ans       d  [  i       0  ]);      return     ans     >=     int  .  MaxValue     /     2     ?     -  1     :     ans  ;      }      static     void     Main  ()      {      int  [][]     mat     =     new     int  [][]      {      new     int  []     {  1       0       1       1       1  }      new     int  []     {  1       1       1       1       1  }      new     int  []     {  1       1       1       1       1  }      new     int  []     {  1       1       1       0       1  }      new     int  []     {  1       1       1       1       0  }      };      int     result     =     FindShortestPath  (  mat  );      Console  .  WriteLine  (  result  );      }   }   
JavaScript
   function     findShortestPath  (  mat  )     {      const     n     =     mat  .  length  ;      const     m     =     mat  [  0  ].  length  ;      const     rowNum     =     [  -  1       0       0       1  ];      const     colNum     =     [  0       -  1       1       0  ];      // Distance matrix initialized to large value      const     d     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  m  ).  fill  (  Number  .  MAX_SAFE_INTEGER  ));      // Check if cell is valid      function     isValid  (  i       j  )     {      return     !  (  i      <     0     ||     i     >=     n     ||     j      <     0     ||     j     >=     m  );      }      // Check if cell and its adjacent cells are safe      function     check  (  i       j  )     {      if     (  !  isValid  (  i       j  ))     return     false  ;      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      let     ni     =     i     +     rowNum  [  k  ];      let     nj     =     j     +     colNum  [  k  ];      if     (  isValid  (  ni       nj  )     &&     mat  [  ni  ][  nj  ]     ===     0  )     return     false  ;      }      return     true  ;      }      // Queue for BFS      let     q     =     [];      // Push safe cells from rightmost column      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      if     (  check  (  i       m     -     1  ))     {      q  .  push  ([  i       m     -     1       1  ]);      }      }      // BFS traversal      while     (  q  .  length     >     0  )     {      let     [  x       y       dis  ]     =     q  .  shift  ();      if     (  d  [  x  ][  y  ]     >     dis  )     {      d  [  x  ][  y  ]     =     dis  ;      for     (  let     k     =     0  ;     k      <     4  ;     k  ++  )     {      let     ni     =     x     +     rowNum  [  k  ];      let     nj     =     y     +     colNum  [  k  ];      if     (  check  (  ni       nj  ))     {      q  .  push  ([  ni       nj       dis     +     1  ]);      }      }      }      }      // Find minimum distance in first column      let     ans     =     Number  .  MAX_SAFE_INTEGER  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      ans     =     Math  .  min  (  ans       d  [  i  ][  0  ]);      }      return     ans     >=     Number  .  MAX_SAFE_INTEGER     ?     -  1     :     ans  ;   }   const     mat     =     [      [  1       0       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       1       1  ]      [  1       1       1       0       1  ]      [  1       1       1       1       0  ]   ];   const     result     =     findShortestPath  (  mat  );   console  .  log  (  result  );   

Излаз
6  

Временска сложеност: О(р * ц) где су р и ц број редова и колона у датој матрици.
Помоћни простор: О (р * ц)