Vsota razlik podmnožic
#practiceLinkDiv { display: none !important; } Za množico S, sestavljeno iz n števil, poiščite vsoto razlike med zadnjim in prvim elementom vsake podmnožice. Prvi in zadnji element vsake podmnožice najdemo tako, da ju ohranimo v istem vrstnem redu, kot sta prikazana v vhodnem nizu S. tj. sumSetDiff(S) =? (zadnje(-e) – prve(-e)), kjer vsota zajema vse podmnožice s od S.
Opomba:
Elementi v podmnožici morajo biti v enakem vrstnem redu kot v množici S. Primeri:
S = {5 2 9 6} n = 4
Subsets are:
{5} last(s)-first(s) = 0.
{2} last(s)-first(s) = 0.
{9} last(s)-first(s) = 0.
{6} last(s)-first(s) = 0.
{52} last(s)-first(s) = -3.
{59} last(s)-first(s) = 4.
{56} last(s)-first(s) = 1.
{29} last(s)-first(s) = 7.
{26} last(s)-first(s) = 4.
{96} last(s)-first(s) = -3.
{529} last(s)-first(s) = 4.
{526} last(s)-first(s) = 1.
{596} last(s)-first(s) = 1.
{296} last(s)-first(s) = 4.
{5296} last(s)-first(s) = 1.
Output = -3+4+1+7+4-3+4+1+1+4+1
= 21.
Priporočeno: prosimo, rešite na ' VADITE « preden nadaljujete z rešitvijo.
Preprosta rešitev
kajti ta problem je najti razliko med zadnjim in prvim elementom za vsako podmnožico s množice S in izpisati vsoto vseh teh razlik. Časovna kompleksnost za ta pristop je O(2
n
).
Učinkovita rešitev
rešiti problem v linearni časovni kompleksnosti. Podan nam je niz S, sestavljen iz n števil, in izračunati moramo vsoto razlike med zadnjim in prvim elementom vsake podmnožice S, tj. sumSetDiff(S) =? (zadnje(-e) - prve(-e)), kjer vsota zajema vse podmnožice s od S. Enakovredno je sumSetDiff(S) =? (zadnji(e)) - ? (first(s)) Z drugimi besedami, lahko izračunamo vsoto zadnjega elementa vsake podmnožice in vsoto prvega elementa vsake podmnožice posebej in nato izračunamo njuno razliko. Recimo, da so elementi S {a1 a2 a3... an}. Upoštevajte naslednjo ugotovitev:
Ustvari kviz
- Podmnožice, ki vsebujejo element a1 kot prvi element lahko dobimo tako, da vzamemo katero koli podmnožico {a2 a3... an} in nato vanjo vključimo a1. Število takih podmnožic bo 2 n-1 .
- Podmnožice, ki vsebujejo element a2 kot prvi element, lahko dobimo tako, da vzamemo katero koli podmnožico {a3 a4... an} in vanjo nato vključimo a2. Število takih podmnožic bo 2 n-2 .
- Podmnožice, ki vsebujejo element ai kot prvi element, lahko dobimo tako, da vzamemo katero koli podmnožico {ai a(i+1)... an} in vanjo nato vključimo ai. Število takih podmnožic bo 2 n-i .
- Zato bo vsota prvega elementa vseh podmnožic: SumF = a1.2
- n-1
- + a2.2
- n-2
- +...+ an.1 Na podoben način lahko izračunamo vsoto zadnjega elementa vseh podmnožic S (pri vsakem koraku vzamemo ai kot zadnji element namesto prvega elementa in nato pridobimo vse podmnožice). Vsota L = a1,1 + a2,2 +...+ an.2
- n-1
- Končno bo odgovor na naš problem
- SumL – SumF
- .
- Izvedba:
- C++
Java// A C++ program to find sum of difference between // last and first element of each subset #include// Returns the sum of first elements of all subsets int SumF ( int S [] int n ) { int sum = 0 ; // Compute the SumF as given in the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( S [ i ] * pow ( 2 n - i -1 )); return sum ; } // Returns the sum of last elements of all subsets int SumL ( int S [] int n ) { int sum = 0 ; // Compute the SumL as given in the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( S [ i ] * pow ( 2 i )); return sum ; } // Returns the difference between sum of last elements of // each subset and the sum of first elements of each subset int sumSetDiff ( int S [] int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program to test above function int main () { int n = 4 ; int S [] = { 5 2 9 6 }; printf ( '%d n ' sumSetDiff ( S n )); return 0 ; } Python3// A Java program to find sum of difference // between last and first element of each // subset class GFG { // Returns the sum of first elements // of all subsets static int SumF ( int S [] int n ) { int sum = 0 ; // Compute the SumF as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . pow ( 2 n - i - 1 )); return sum ; } // Returns the sum of last elements // of all subsets static int SumL ( int S [] int n ) { int sum = 0 ; // Compute the SumL as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . pow ( 2 i )); return sum ; } // Returns the difference between sum // of last elements of each subset and // the sum of first elements of each // subset static int sumSetDiff ( int S [] int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program public static void main ( String arg [] ) { int n = 4 ; int S [] = { 5 2 9 6 }; System . out . println ( sumSetDiff ( S n )); } } // This code is contributed by Anant Agarwal.C## Python3 program to find sum of # difference between last and # first element of each subset # Returns the sum of first # elements of all subsets def SumF ( S n ): sum = 0 # Compute the SumF as given # in the above explanation for i in range ( n ): sum = sum + ( S [ i ] * pow ( 2 n - i - 1 )) return sum # Returns the sum of last # elements of all subsets def SumL ( S n ): sum = 0 # Compute the SumL as given # in the above explanation for i in range ( n ): sum = sum + ( S [ i ] * pow ( 2 i )) return sum # Returns the difference between sum # of last elements of each subset and # the sum of first elements of each subset def sumSetDiff ( S n ): return SumL ( S n ) - SumF ( S n ) # Driver program n = 4 S = [ 5 2 9 6 ] print ( sumSetDiff ( S n )) # This code is contributed by Anant Agarwal.JavaScript// A C# program to find sum of difference // between last and first element of each // subset using System ; class GFG { // Returns the sum of first elements // of all subsets static int SumF ( int [] S int n ) { int sum = 0 ; // Compute the SumF as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . Pow ( 2 n - i - 1 )); return sum ; } // Returns the sum of last elements // of all subsets static int SumL ( int [] S int n ) { int sum = 0 ; // Compute the SumL as given in // the above explanation for ( int i = 0 ; i < n ; i ++ ) sum = sum + ( int )( S [ i ] * Math . Pow ( 2 i )); return sum ; } // Returns the difference between sum // of last elements of each subset and // the sum of first elements of each // subset static int sumSetDiff ( int [] S int n ) { return SumL ( S n ) - SumF ( S n ); } // Driver program public static void Main () { int n = 4 ; int [] S = { 5 2 9 6 }; Console . Write ( sumSetDiff ( S n )); } } // This code is contributed by nitin mittal.PHP// Returns the sum of first elements of all subsets function sumF ( S n ) { let sum = 0 ; // Compute the SumF as given in the above explanation for ( let i = 0 ; i < n ; i ++ ) { sum += S [ i ] * Math . pow ( 2 n - i - 1 ); } return sum ; } // Returns the sum of last elements of all subsets function sumL ( S n ) { let sum = 0 ; // Compute the SumL as given in the above explanation for ( let i = 0 ; i < n ; i ++ ) { sum += S [ i ] * Math . pow ( 2 i ); } return sum ; } // Returns the difference between sum of last elements of each subset and the sum of first elements of each subset function sumSetDiff ( S n ) { return sumL ( S n ) - sumF ( S n ); } // Driver program to test the above functions function main () { const n = 4 ; const S = [ 5 2 9 6 ]; console . log ( sumSetDiff ( S n )); } main ();// A PHP program to find sum // of difference between last // and first element of each subset // Returns the sum of first // elements of all subsets function SumF ( $S $n ) { $sum = 0 ; // Compute the SumF as given // in the above explanation for ( $i = 0 ; $i < $n ; $i ++ ) $sum = $sum + ( $S [ $i ] * pow ( 2 $n - $i - 1 )); return $sum ; } // Returns the sum of last // elements of all subsets function SumL ( $S $n ) { $sum = 0 ; // Compute the SumL as given // in the above explanation for ( $i = 0 ; $i < $n ; $i ++ ) $sum = $sum + ( $S [ $i ] * pow ( 2 $i )); return $sum ; } // Returns the difference between // sum of last elements of // each subset and the sum of // first elements of each subset function sumSetDiff ( $S $n ) { return SumL ( $S $n ) - SumF ( $S $n ); } // Driver Code $n = 4 ; $S = array ( 5 2 9 6 ); echo sumSetDiff ( $S $n ); // This code is contributed by anuj_67. ?>- Izhod:
21
- Časovna zahtevnost : O(n) Ta članek je prispeval
- Akash Aggarwal
- . Če vam je GeeksforGeeks všeč in bi radi prispevali, lahko tudi napišete članek z uporabo
- prispevati.geeksforgeeks.org
- ali pošljite svoj članek na e-poštni naslov [email protected]. Oglejte si, da se vaš članek pojavi na glavni strani GeeksforGeeks in pomagajte drugim Geekom.