Ugotovite, ali je podniz v obliki gore ali ne

Ugotovite, ali je podniz v obliki gore ali ne
Preizkusite na GfG Practice #practiceLinkDiv { display: none !important; }

Dobili smo niz celih števil in obseg, ki ga moramo ugotoviti, ali ima podniz, ki spada v ta obseg, vrednosti v obliki gore ali ne. Za vse vrednosti podniza pravimo, da so v obliki gore, če bodisi vse vrednosti naraščajo ali padajo bodisi najprej naraščajo in nato padajo. 
Bolj formalno podmatrika [a1 a2 a3…aN] pravimo, da je v obliki gore, če obstaja celo število K 1 <= K <= N such that 
a1 <= a2 <= a3 .. <= aK >= a(K+1) >= a(K+2) …. >= aN  

Primeri:  

  Input : Arr[]   = [2 3 2 4 4 6 3 2] Range = [0 2]   Output :    Yes   Explanation:   The output is yes  subarray is [2 3 2] so subarray first increases and then decreases   Input:    Arr[] = [2 3 2 4 4 6 3 2] Range = [2 7]   Output:   Yes   Explanation:   The output is yes  subarray is [2 4 4 6 3 2] so subarray first increases and then decreases   Input:   Arr[]= [2 3 2 4 4 6 3 2] Range = [1 3]   Output:   no   Explanation:   The output is no subarray is [3 2 4] so subarray is not in the form above stated 
Recommended Practice Problem gorske podmatrike Poskusite!

rešitev:  

    Pristop: Težava ima več poizvedb, zato je treba za vsako poizvedbo rešitev izračunati z najmanjšo možno časovno zapletenostjo. Torej ustvarite dva dodatna presledka dolžine prvotne matrike. Za vsak element poiščite zadnji indeks na levi strani, ki narašča, tj. večji od prejšnjega elementa, in poiščite element na desni strani, ki bo shranil prvi indeks na desni strani, ki se zmanjšuje, tj. večji od svojega naslednjega elementa. Če je te vrednosti mogoče izračunati za vsak indeks v konstantnem času, potem je za vsak dani obseg mogoče podati odgovor v konstantnem času. Algoritem:  
    1. Ustvarite dva dodatna prostora dolžine n levo in desno in dodatno spremenljivko lastptr
    2. Inicializiraj levo[0] = 0 in lastptr = 0
    3. Preletite izvirno matriko od drugega indeksa do konca
    4. Za vsak indeks preverite, ali je večji od prejšnjega elementa, če da, nato posodobite lastptr s trenutnim indeksom.
    5. Za vsak indeks shranite lastptr v levo[i]
    6. inicializirati desno [N-1] = N-1 in lastptr = N-1
    7. Preletite izvirno matriko od predzadnjega indeksa do začetka
    8. Za vsak indeks preverite, ali je večji od naslednjega elementa, če da, nato posodobite lastptr s trenutnim indeksom.
    9. Za vsak indeks shranite lastptr v prav[i]
    10. Zdaj obdelajte poizvedbe
    11. za vsako poizvedbo l r če desno[l] >= levo[r] nato natisnite ja drugače št
    Izvedba:
C++
   // C++ program to check whether a subarray is in   // mountain form or not   #include          using     namespace     std  ;   // Utility method to construct left and right array   int     preprocess  (  int     arr  []     int     N       int     left  []     int     right  [])   {      // Initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;      for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }      // Initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;      for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }   }   // Method returns true if arr[L..R] is in mountain form   bool     isSubarrayMountainForm  (  int     arr  []     int     left  []      int     right  []     int     L       int     R  )   {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);   }   // Driver code to test above methods   int     main  ()   {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     sizeof  (  arr  )     /     sizeof  (  int  );      int     left  [  N  ]     right  [  N  ];      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      L     =     1  ;      R     =     3  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      cout      < <     'Subarray is in mountain form  n  '  ;      else      cout      < <     'Subarray is not in mountain form  n  '  ;      return     0  ;   }   
Java
   // Java program to check whether a subarray is in   // mountain form or not   class   SubArray   {      // Utility method to construct left and right array      static     void     preprocess  (  int     arr  []       int     N       int     left  []       int     right  []  )      {      // initialize first left index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ]  )      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ]  )      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if arr[L..R] is in mountain form      static     boolean     isSubarrayMountainForm  (  int     arr  []       int     left  []        int     right  []       int     L       int     R  )      {      // return true only if right at starting range is      // greater than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]  );      }          public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {  2       3       2       4       4       6       3       2  };      int     N     =     arr  .  length  ;      int     left  []     =     new     int  [  N  ]  ;      int     right  []     =     new     int  [  N  ]  ;      preprocess  (  arr       N       left       right  );      int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      System  .  out  .  println  (  'Subarray is in mountain form'  );      else      System  .  out  .  println  (  'Subarray is not in mountain form'  );      }   }   // This Code is Contributed by Saket Kumar   
Python3
   # Python 3 program to check whether a subarray is in   # mountain form or not   # Utility method to construct left and right array   def   preprocess  (  arr     N     left     right  ):   # initialize first left index as that index only   left  [  0  ]   =   0   lastIncr   =   0   for   i   in   range  (  1    N  ):   # if current value is greater than previous   # update last increasing   if   (  arr  [  i  ]   >   arr  [  i   -   1  ]):   lastIncr   =   i   left  [  i  ]   =   lastIncr   # initialize last right index as that index only   right  [  N   -   1  ]   =   N   -   1   firstDecr   =   N   -   1   i   =   N   -   2   while  (  i   >=   0  ):   # if current value is greater than next   # update first decreasing   if   (  arr  [  i  ]   >   arr  [  i   +   1  ]):   firstDecr   =   i   right  [  i  ]   =   firstDecr   i   -=   1   # method returns true if arr[L..R] is in mountain form   def   isSubarrayMountainForm  (  arr     left     right     L     R  ):   # return true only if right at starting range is   # greater than left at ending range   return   (  right  [  L  ]   >=   left  [  R  ])   # Driver code    if   __name__   ==   '__main__'  :   arr   =   [  2     3     2     4     4     6     3     2  ]   N   =   len  (  arr  )   left   =   [  0   for   i   in   range  (  N  )]   right   =   [  0   for   i   in   range  (  N  )]   preprocess  (  arr     N     left     right  )   L   =   0   R   =   2   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   L   =   1   R   =   3   if   (  isSubarrayMountainForm  (  arr     left     right     L     R  )):   print  (  'Subarray is in mountain form'  )   else  :   print  (  'Subarray is not in mountain form'  )   # This code is contributed by   # Surendra_Gangwar   
C#
   // C# program to check whether    // a subarray is in mountain    // form or not   using     System  ;   class     GFG   {          // Utility method to construct       // left and right array      static     void     preprocess  (  int     []  arr       int     N           int     []  left       int     []  right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      int     lastIncr     =     0  ;          for     (  int     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      int     firstDecr     =     N     -     1  ;          for     (  int     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      static     bool     isSubarrayMountainForm  (  int     []  arr       int     []  left        int     []  right       int     L       int     R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }              // Driver Code      static     public     void     Main     ()      {      int     []  arr     =     {  2       3       2       4        4       6       3       2  };      int     N     =     arr  .  Length  ;      int     []  left     =     new     int  [  N  ];      int     []  right     =     new     int  [  N  ];      preprocess  (  arr       N       left       right  );          int     L     =     0  ;      int     R     =     2  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );          L     =     1  ;      R     =     3  ;          if     (  isSubarrayMountainForm  (  arr       left           right       L       R  ))      Console  .  WriteLine  (  'Subarray is in '     +         'mountain form'  );      else      Console  .  WriteLine  (  'Subarray is not '     +         'in mountain form'  );      }   }   // This code is contributed by aj_36   
JavaScript
    <  script  >      // Javascript program to check whether       // a subarray is in mountain       // form or not          // Utility method to construct       // left and right array      function     preprocess  (  arr       N       left       right  )      {      // initialize first left       // index as that index only      left  [  0  ]     =     0  ;      let     lastIncr     =     0  ;          for     (  let     i     =     1  ;     i      <     N  ;     i  ++  )      {      // if current value is       // greater than previous      // update last increasing      if     (  arr  [  i  ]     >     arr  [  i     -     1  ])      lastIncr     =     i  ;      left  [  i  ]     =     lastIncr  ;      }          // initialize last right       // index as that index only      right  [  N     -     1  ]     =     N     -     1  ;      let     firstDecr     =     N     -     1  ;          for     (  let     i     =     N     -     2  ;     i     >=     0  ;     i  --  )      {      // if current value is       // greater than next      // update first decreasing      if     (  arr  [  i  ]     >     arr  [  i     +     1  ])      firstDecr     =     i  ;      right  [  i  ]     =     firstDecr  ;      }      }          // method returns true if      // arr[L..R] is in mountain form      function     isSubarrayMountainForm  (  arr       left       right       L       R  )      {      // return true only if right at       // starting range is greater       // than left at ending range      return     (  right  [  L  ]     >=     left  [  R  ]);      }          let     arr     =     [  2       3       2       4       4       6       3       2  ];      let     N     =     arr  .  length  ;      let     left     =     new     Array  (  N  );      let     right     =     new     Array  (  N  );      preprocess  (  arr       N       left       right  );      let     L     =     0  ;      let     R     =     2  ;      if     (  isSubarrayMountainForm  (  arr       left       right       L       R  ))      document  .  write  (  'Subarray is in '     +     'mountain form'     +     ' 
'
); else document . write ( 'Subarray is not ' + 'in mountain form' + '
'
); L = 1 ; R = 3 ; if ( isSubarrayMountainForm ( arr left right L R )) document . write ( 'Subarray is in ' + 'mountain form' ); else document . write ( 'Subarray is not ' + 'in mountain form' ); < /script>
    Izhod:
Subarray is in mountain form Subarray is not in mountain form 
    Analiza kompleksnosti:  
      Časovna zapletenost: O(n). 
      Potrebna sta le dva prehoda, tako da je časovna kompleksnost O(n). Kompleksnost prostora: O(n). 
      Potrebna sta dva dodatna prostora dolžine n, tako da je kompleksnost prostora O(n).


 

Ustvari kviz