Hârtie tăiată în număr minim de pătrate

Hârtie tăiată în număr minim de pătrate

Dată o hârtie dreptunghiulară de dimensiuni a x b . Sarcina este să tăiați întreaga hârtie în minim număr de pătrat bucăți. Putem alege bucăți pătrate de orice dimensiune dar trebuie tăiate fără a se suprapune sau a lăsa spațiu suplimentar .

Exemple:  

Intrare: a = 5 b = 8

Hârtie-tăiată-în-număr-minim-de-pătrate-15 pătrate tăiate din hârtie de dimensiune 5 X 8

Ieșire: 5
Explicaţie: Putem tăia hârtia în 5 pătrate: 1 pătrat de dimensiunea 5x5 1 pătrat de dimensiunea 3x3 1 pătrat de dimensiunea 2x2 și 2 pătrate de dimensiunea 1x1.

Intrare: a = 13 b = 11

Hârtie-tăiată-în-număr-minim-de-pătrate-26 pătrate tăiate din hârtie de dimensiunea 13 X 11

Ieșire: 6
Explicaţie: Putem tăia hârtia în 6 pătrate: 1 pătrat de dimensiunea 7x7 1 pătrat de dimensiunea 6x6 1 pătrat de dimensiunea 5x5 2 pătrate de dimensiunea 4x4 și 1 pătrat de dimensiunea 1x1.

Intrare: a = 6 b = 7

Hârtie-tăiată-în-număr-minim-de-pătrate-35 pătrate tăiate din hârtie de dimensiune 6 X 7

Ieșire: 5
Explicaţie: Putem tăia hârtia în 5 pătrate: 1 pătrat de dimensiunea 4x4 2 pătrate de dimensiunea 3x3 și 2 pătrate de dimensiunea 3x3.

Cuprins

[Abordare incorectă 1] Folosind tehnica Greedy

La prima vedere s-ar putea părea că problema poate fi rezolvată cu ușurință prin tăierea celui mai mare pătrat posibil din hârtie, urmată de tăierea celui mai mare pătrat din hârtie rămasă și așa mai departe până când am tăiat întreaga hârtie. Dar această soluție este incorectă.

De ce Greedy Approach nu va funcționa?

Luați în considerare o hârtie de dimensiune 6x7 atunci dacă încercăm să tăiem hârtia cu lăcomie vom obține 7 pătrate: 1 pătrat de dimensiune 6x6 și 6 pătrate de dimensiune 1x1 întrucât soluția corectă este: 5. Prin urmare, abordarea lacomă nu va funcționa.

[Abordare incorectă 2] Folosind programarea dinamică

Programare dinamică cu tăieturi verticale sau orizontale: O altă soluție care ar putea părea corectă este utilizarea Programare dinamică . Putem menține un tabel dp[][] astfel încât dp[i][j] = numărul minim de pătrate care pot fi tăiate din hârtie de dimensiune eu x j . Apoi pentru hârtie de dimensiune axb

  • Putem încerca să o tăiem de-a lungul fiecărui rând: dp[i][j] = min(dp[i][j] 1 + dp[i - k][j] + dp[k][j]) unde k poate fi în intervalul [1 i - 1].
  • Putem încerca să o tăiem de-a lungul fiecărei coloane: dp[i][j] = min(dp[i][j] 1 + dp[i][j - k] + dp[i][k]) unde k poate fi în intervalul [1 j - 1].

În cele din urmă, minimul tuturor tăierilor va fi răspunsul. Dar și această soluție este incorectă.

De ce tăierea verticală sau orizontală cu Abordarea de programare dinamică nu va funcționa?

Acest lucru nu va funcționa, deoarece presupunem că o tăietură verticală sau orizontală va împărți întotdeauna dreptunghiul în două părți. Luați în considerare o hârtie de dimensiune 13x11 atunci dacă încercăm să tăiem hârtia folosind abordarea DP, vom obține 8 pătrate, dar răspunsul corect (așa cum se arată în exemple) este 6. Prin urmare, programarea dinamică nu va funcționa.

[Abordare corectă] Folosind DFS și programare dinamică

The idee este să tăiați întreaga hârtie folosind DFS în de jos în sus mod. La fiecare pas, găsiți colțul cel mai jos din stânga al hârtiei și încercați să tăiați pătrate de toate dimensiunile posibile din acel colț. După ce tăiați un pătrat, găsiți din nou colțul din stânga jos al hârtiei rămase pentru a tăia pătrate de toate dimensiunile posibile și așa mai departe. Dar dacă încercăm toate tăieturile posibile din colțul din stânga cel mai jos al fiecărei dimensiuni posibile de hârtie, atunci ar fi destul de ineficient. Îl putem optimiza utilizând Programare dinamică pentru a stoca tăieturi minime pentru fiecare dimensiune posibilă de hârtie.

Pentru a identifica în mod unic orice dimensiune de hârtie, putem menține o matrice remSq[] astfel încât remSq[i] stochează numărul de pătrate rămase de dimensiunea 1x1 în coloana a I-a a hârtiei. Deci, pentru o hârtie de dimensiunea 6x7 remSq[] = {6 6 6 6 6 6 6}. De asemenea, pentru a găsi colțul din stânga cel mai jos vom găsi primul indice care are pătratele maxime rămase. Deci, putem calcula valoarea remSq[] array pentru a găsi o cheie unică pentru toate valorile posibile ale remSq[] array.

C++
   // C++ Program to find minimum number of squares to cut   // from a paper of size axb   #include          using     namespace     std  ;   // function to get the hash key for remSq array   int     getKey  (  vector   <  int  >     &  remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )      {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   int     minCutUtil  (  vector   <  int  >     &  remSq       int     a       int     b           map   <  int       int  >     &  memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  find  (  key  )     !=     memo  .  end  ())      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      vector   <  int  >     newRemSq     =     remSq  ;      int     ans     =     INT_MAX  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||         newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      return     memo  [  key  ]     =     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      vector   <  int  >     remSq  (  b       a  );      map   <  int       int  >     memo  ;      return     minCutUtil  (  remSq       a       b       memo  );   }   int     main  ()     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      cout      < <     minCut  (  a       b  );      return     0  ;   }   
Java
   // Java Program to find minimum number of squares to cut   // from a paper of size axb   import     java.util.*  ;   class   GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     base     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Map   <  Integer       Integer  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  containsKey  (  key  ))      return     memo  .  get  (  key  );      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ]  ;      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     Arrays  .  copyOf  (  remSq       b  );      int     ans     =     Integer  .  MAX_VALUE  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  .  put  (  key       ans  );      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ]  ;      Arrays  .  fill  (  remSq       a  );      Map   <  Integer       Integer  >     memo     =     new     HashMap   <>  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      public     static     void     main  (  String  []     args  )     {      // Sample Input      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      System  .  out  .  println  (  minCut  (  a       b  ));      }   }   
Python
   # Python Program to find minimum number of squares to cut   # from a paper of size axb   # function to get the hash key for remSq array   def   getKey  (  remSq     b  ):   base   =   1   key   =   0   for   i   in   range  (  b  ):   key   +=   remSq  [  i  ]   *   base   base   =   base   *   (  b   +   1  )   return   key   # Recursive function to find the minimum number of square cuts   # for a given remSq array   def   minCutUtil  (  remSq     a     b     memo  ):   # pointers to mark the start and end of range    # with maximum remaining squares   start   =   0   # Check if we have previously calculated the answer   # for the same state   key   =   getKey  (  remSq     b  )   if   key   in   memo  :   return   memo  [  key  ]   maxRemSq   =   0   # Find the starting point of min height   for   i   in   range  (  b  ):   if   remSq  [  i  ]   >   maxRemSq  :   maxRemSq   =   remSq  [  i  ]   start   =   i   # If max remaining squares = 0 then we have already   # cut the entire paper   if   maxRemSq   ==   0  :   return   0   end   =   start   newRemSq   =   remSq  [:]   ans   =   float  (  'inf'  )   # Find the ending point of min height   while   end    <   b  :   # length of edge of square from start till current end   squareEdge   =   end   -   start   +   1   # If the current column does not have maximum remaining   # squares or if it's impossible to cut a square of   # size squareEdge then break out of the loop   if   newRemSq  [  end  ]   !=   maxRemSq   or    newRemSq  [  end  ]   -   squareEdge    <   0  :   break   # If we can cut a square of size squareEdge    # update the remainingSquares   for   i   in   range  (  start     end   +   1  ):   newRemSq  [  i  ]   =   maxRemSq   -   squareEdge   # Find the solution for new remainingSquares   ans   =   min  (  ans     1   +   minCutUtil  (  newRemSq     a     b     memo  ))   end   +=   1   memo  [  key  ]   =   ans   return   ans   # Function to find the minimum number of squares we can cut    # using paper of size a X b   def   minCut  (  a     b  ):   # if the given rectangle is a square   if   a   ==   b  :   return   1   # Initialize remaining squares = a for all the b columns   remSq   =   [  a  ]   *   b   memo   =   {}   return   minCutUtil  (  remSq     a     b     memo  )   if   __name__   ==   '__main__'  :   # Sample Input   a   =   13   b   =   11   # Function call to get minimum number    # of squares for axb   print  (  minCut  (  a     b  ))   
C#
   // C# Program to find minimum number of squares to cut   // from a paper of size axb   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // function to get the hash key for remSq array      static     int     getKey  (  int  []     remSq       int     b  )     {      int     baseVal     =     1  ;      int     key     =     0  ;      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     baseVal  );      baseVal     =     baseVal     *     (  b     +     1  );      }      return     key  ;      }      // Recursive function to find the minimum number of square cuts      // for a given remSq array      static     int     minCutUtil  (  int  []     remSq       int     a       int     b        Dictionary   <  int       int  >     memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      int     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      int     key     =     getKey  (  remSq       b  );      if     (  memo  .  ContainsKey  (  key  ))      return     memo  [  key  ];      int     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ==     0  )      return     0  ;      end     =     start  ;      int  []     newRemSq     =     (  int  [])  remSq  .  Clone  ();      int     ans     =     int  .  MaxValue  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      int     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !=     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  int     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  Min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;      }      // Function to find the minimum number of squares we can cut       // using paper of size a X b      static     int     minCut  (  int     a       int     b  )     {      // if the given rectangle is a square      if     (  a     ==     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      int  []     remSq     =     new     int  [  b  ];      for     (  int     i     =     0  ;     i      <     b  ;     i  ++  )     remSq  [  i  ]     =     a  ;      Dictionary   <  int       int  >     memo     =     new     Dictionary   <  int       int  >  ();      return     minCutUtil  (  remSq       a       b       memo  );      }      static     void     Main  ()     {      int     a     =     13       b     =     11  ;      // Function call to get minimum number       // of squares for axb      Console  .  WriteLine  (  minCut  (  a       b  ));      }   }   
JavaScript
   // JavaScript Program to find minimum number of squares to cut   // from a paper of size axb   // function to get the hash key for remSq array   function     getKey  (  remSq       b  )     {      let     base     =     1  ;      let     key     =     0  ;      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      key     +=     (  remSq  [  i  ]     *     base  );      base     =     base     *     (  b     +     1  );      }      return     key  ;   }   // Recursive function to find the minimum number of square cuts   // for a given remSq array   function     minCutUtil  (  remSq       a       b       memo  )     {      // pointers to mark the start and end of range       // with maximum remaining squares      let     start     =     0       end  ;      // Check if we have previously calculated the answer      // for the same state      let     key     =     getKey  (  remSq       b  );      if     (  key     in     memo  )      return     memo  [  key  ];      let     maxRemSq     =     0  ;      // Find the starting point of min height      for     (  let     i     =     0  ;     i      <     b  ;     i  ++  )     {      if     (  remSq  [  i  ]     >     maxRemSq  )     {      maxRemSq     =     remSq  [  i  ];      start     =     i  ;      }      }      // If max remaining squares = 0 then we have already      // cut the entire paper      if     (  maxRemSq     ===     0  )      return     0  ;      end     =     start  ;      let     newRemSq     =     remSq  .  slice  ();      let     ans     =     Infinity  ;      // Find the ending point of min height      while     (  end      <     b  )     {      // length of edge of square from start till current end      let     squareEdge     =     end     -     start     +     1  ;      // If the current column does not have maximum remaining      // squares or if it's impossible to cut a square of      // size squareEdge then break out of the loop      if     (  newRemSq  [  end  ]     !==     maxRemSq     ||      newRemSq  [  end  ]     -     squareEdge      <     0  )      break  ;      // If we can cut a square of size squareEdge       // update the remainingSquares      for     (  let     i     =     start  ;     i      <=     end  ;     i  ++  )      newRemSq  [  i  ]     =     maxRemSq     -     squareEdge  ;      // Find the solution for new remainingSquares      ans     =     Math  .  min  (  ans       1     +     minCutUtil  (  newRemSq       a       b       memo  ));      end     +=     1  ;      }      memo  [  key  ]     =     ans  ;      return     ans  ;   }   // Function to find the minimum number of squares we can cut    // using paper of size a X b   function     minCut  (  a       b  )     {      // if the given rectangle is a square      if     (  a     ===     b  )      return     1  ;      // Initialize remaining squares = a for all the b columns      let     remSq     =     new     Array  (  b  ).  fill  (  a  );      let     memo     =     {};      return     minCutUtil  (  remSq       a       b       memo  );   }   // Driver Code   let     a     =     13       b     =     11  ;   // Function call to get minimum number    // of squares for axb   console  .  log  (  minCut  (  a       b  ));   

Ieșire
6 

Complexitatea timpului: O(a^b) pentru fiecare dintre b coloane putem avea câte un pătrat.
Spațiu auxiliar: O(a^b) datorită memorizării care stochează fiecare stare unică.