Chiar și Suma numerelor Fibonacci

Chiar și Suma numerelor Fibonacci
Încercați-l pe GfG Practice #practiceLinkDiv { display: none !important; }

Având în vedere o limită, găsiți suma tuturor termenilor cu valori pare din șirul Fibonacci sub limita dată.
Primii termeni ai Numerele Fibonacci sunt 1 1 2 3 5 8 13 21 34 55 89 144 233 ... (Sunt evidențiate numerele pare).
Exemple:  
 

Input : limit = 8 Output : 10 Explanation : 2 + 8 = 10 Input : limit = 400; Output : 188. Explanation : 2 + 8 + 34 + 144 = 188. 


 

Practică recomandată Chiar și Suma numerelor Fibonacci Încearcă!


O soluție simplă este să iterați prin toate numerele Fibonacci, în timp ce următorul număr este mai mic sau egal cu limita dată. Pentru fiecare număr verificați dacă este par. Dacă numărul este chiar, adăugați-l la rezultat.
O soluție eficientă se bazează pe cele de mai jos formula recursivă pentru numerele Fibonacci chiar
 

Recurrence for Even Fibonacci sequence is: EFn = 4EFn-1 + EFn-2 with seed values EF0 = 0 and EF1 = 2.   EFn   represents n'th term in Even Fibonacci sequence. 


Consultați acest mai multe detalii despre formula de mai sus.
Deci, în timp ce repetăm ​​numerele Fibonacci, generăm doar numere Fibonacci par. 
 

C++
   // Find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.   #include       using     namespace     std  ;   // Returns sum of even Fibonacci numbers which are   // less than or equal to given limit.   int     evenFibSum  (  int     limit  )   {      if     (  limit      <     2  )      return     0  ;      // Initialize first two even Fibonacci numbers      // and their sum      long     long     int     ef1     =     0       ef2     =     2  ;      long     long     int     sum     =     ef1     +     ef2  ;      // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      long     long     int     ef3     =     4  *  ef2     +     ef1  ;      // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;      // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }      return     sum  ;   }   // Driver code   int     main  ()   {      int     limit     =     400  ;      cout      < <     evenFibSum  (  limit  );      return     0  ;   }   
Java
   // Find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.   import     java.io.*  ;   class   GFG      {      // Returns sum of even Fibonacci numbers which are      // less than or equal to given limit.      static     int     evenFibSum  (  int     limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even Fibonacci numbers      // and their sum      long     ef1     =     0       ef2     =     2  ;      long     sum     =     ef1     +     ef2  ;          // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      long     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return  (  int  )     sum  ;      }          // Driver code      public     static     void     main     (  String  []     args  )         {      int     limit     =     400  ;      System  .  out  .  println  (  evenFibSum  (  limit  ));          }   }   // This code is contributed by vt_m.   
Python3
   # Find the sum of all the even-valued    # terms in the Fibonacci sequence which    # do not exceed given limit.   # Returns sum of even Fibonacci numbers which   # are less than or equal to given limit.   def   evenFibSum  (  limit  )   :   if   (  limit    <   2  )   :   return   0   # Initialize first two even Fibonacci numbers   # and their sum   ef1   =   0   ef2   =   2   sm  =   ef1   +   ef2   # calculating sum of even Fibonacci value   while   (  ef2    <=   limit  )   :   # get next even value of Fibonacci    # sequence   ef3   =   4   *   ef2   +   ef1   # If we go beyond limit we break loop   if   (  ef3   >   limit  )   :   break   # Move to next even number and update   # sum   ef1   =   ef2   ef2   =   ef3   sm   =   sm   +   ef2   return   sm   # Driver code   limit   =   400   print  (  evenFibSum  (  limit  ))   # This code is contributed by Nikita Tiwari.   
C#
   // C# program to Find the sum of all   // the even-valued terms in the    // Fibonacci sequence which do not   // exceed given limit.given limit.   using     System  ;   class     GFG     {          // Returns sum of even Fibonacci       // numbers which are less than or      // equal to given limit.      static     int     evenFibSum  (  int     limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even      // Fibonacci numbers and their sum      long     ef1     =     0       ef2     =     2  ;      long     sum     =     ef1     +     ef2  ;          // calculating sum of even       // Fibonacci value      while     (  ef2      <=     limit  )      {          // get next even value of       // Fibonacci sequence      long     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit      // we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number      // and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return  (  int  )     sum  ;      }          // Driver code      public     static     void     Main     ()         {      int     limit     =     400  ;      Console  .  Write  (  evenFibSum  (  limit  ));          }   }   // This code is contributed by Nitin Mittal.   
PHP
      // Find the sum of all the    // even-valued terms in the    // Fibonacci sequence which    // do not exceed given limit.   // Returns sum of even Fibonacci   // numbers which are less than or    // equal to given limit.   function   evenFibSum  (  $limit  )   {   if   (  $limit    <   2  )   return   0  ;   // Initialize first two even    // Fibonacci numbers and their sum   $ef1   =   0  ;   $ef2   =   2  ;   $sum   =   $ef1   +   $ef2  ;   // calculating sum of   // even Fibonacci value   while   (  $ef2    <=   $limit  )   {   // get next even value of   // Fibonacci sequence   $ef3   =   4   *   $ef2   +   $ef1  ;   // If we go beyond limit   // we break loop   if   (  $ef3   >   $limit  )   break  ;   // Move to next even number   // and update sum   $ef1   =   $ef2  ;   $ef2   =   $ef3  ;   $sum   +=   $ef2  ;   }   return   $sum  ;   }   // Driver code   $limit   =   400  ;   echo  (  evenFibSum  (  $limit  ));   // This code is contributed by Ajit.   ?>   
JavaScript
    <  script  >   // Javascript program to find the sum of all the even-valued terms in   // the Fibonacci sequence which do not exceed   // given limit.      // Returns sum of even Fibonacci numbers which are      // less than or equal to given limit.      function     evenFibSum  (  limit  )      {      if     (  limit      <     2  )      return     0  ;          // Initialize first two even Fibonacci numbers      // and their sum      let     ef1     =     0       ef2     =     2  ;      let     sum     =     ef1     +     ef2  ;          // calculating sum of even Fibonacci value      while     (  ef2      <=     limit  )      {      // get next even value of Fibonacci sequence      let     ef3     =     4     *     ef2     +     ef1  ;          // If we go beyond limit we break loop      if     (  ef3     >     limit  )      break  ;          // Move to next even number and update sum      ef1     =     ef2  ;      ef2     =     ef3  ;      sum     +=     ef2  ;      }          return     sum  ;      }       // Function call          let     limit     =     400  ;      document  .  write  (  evenFibSum  (  limit  ));        <  /script>   

Ieșire:  
 

188 

Complexitatea timpului: Pe)

Spațiu auxiliar: O(1)


 

Creați un test