Proiectarea eficientă de introducere, ștergeți și interogări mediane pe un set

Proiectarea eficientă de introducere, ștergeți și interogări mediane pe un set

Având în vedere un set gol inițial și o serie de întrebări pe acesta, fiecare dintre următoarele tipuri:  

    Introduce - Introduceți un element nou „X”. Şterge - Ștergeți un element existent „X”. Median - Tipăriți elementul median al numerelor în prezent în set

Exemplu:  

Input : Insert 1 Insert 4 Insert 7 Median Output : The first three queries should insert 1 4 and 7 into an empty set. The fourth query should return 4 (median of 1 4 7). 


În scop de expunere, presupunem următoarele, dar aceste presupuneri nu sunt limitările metodei discutate aici: 
1. În orice caz, toate elementele sunt distincte care nu este niciunul dintre ele să nu aibă loc de mai multe ori. 
2. Interogarea „mediană” se face numai atunci când există un număr ciudat de elemente în set. (Va trebui să facem două întrebări pe arborele nostru de segment în caz de numere chiar) 
3. Elementele din set variază de la 1 la +10^6.

Metoda 1 (naivă)  
În implementarea naivă, putem face primele două întrebări în O (1), dar ultima interogare în O (MAX_ELEM) unde max_elem este elementul maxim din toate timpurile (inclusiv elemente șterse).

Să ne asumăm un tablou conta[] (de dimensiunea 10^6 + 1) pentru a menține numărul fiecărui element în subset. Următoarele sunt algoritmi simpli și explicativi pentru cei 3 întrebări:
Introduceți x interogare:  

 count[x]++; if (x > max_elem) max_elem = x; n++; 


Ștergeți X interogare:   

 if (count[x] > 0) count[x]--; n--; 


Interogare mediană:   

 sum = 0; i = 0; while( sum  <= n / 2 ) { i++; sum += count[i]; } median = i; return median; 

Ilustrația numărului de matrice [] reprezentând setul {1 4 7 8 9} Elementul median este „7”:

Proiectarea eficientă a Introducerii și interogări mediane pe un set


Interogarea „mediană” intenționează să găsească (n + 1)/2 „1” în tablou, în acest caz, al treilea „1”; Acum facem același lucru folosind un arbore de segment.
 
Metoda 2 (folosind Arbore de segment )  
Facem un arbore de segment Pentru a stoca suma de intervale în care un interval [A B] reprezintă numărul de elemente prezente în setul în prezent în intervalul [A B]. De exemplu, dacă luăm în considerare exemplul de mai sus interogarea (3 7) returnează 2 interogare (4 4) returnează 1 interogare (5 5) returnează 0.

Introducerea și ștergerea interogărilor sunt simple și ambele pot fi implementate folosind actualizarea funcțiilor (int x int dif) (adaugă „dif” la indexul „x”)

Algoritm   

// adds ‘diff’ at index ‘x’   update(node a b x diff)   // If leaf node If a == b and a == x segmentTree[node] += diff // If non-leaf node and x lies in its range If x is in [a b] // Update children recursively update(2*node a (a + b)/2 x diff) update(2*node + 1 (a + b)/2 + 1 b x diff) // Update node segmentTree[node] = segmentTree[2 * node] + segmentTree[2 * node + 1] 


Funcția recursivă de mai sus rulează O (jurnal (max_elem)) (În acest caz, max_elem este 10^6) și utilizat atât pentru inserție, cât și pentru ștergere cu următoarele apeluri: 

  1. Inserarea „X” se face folosind actualizarea (1 0 10^6 x 1). Rețineți că rădăcina arborelui este transmisă indicele de pornire este trecut ca 0 și indicele de sfârșit ca 10^6, astfel încât toate intervalele care au x sunt actualizate.
  2. Ștergerea „X” se face folosind actualizarea (1 0 10^6 x -1). Rețineți că rădăcina arborelui este transmisă indicele de pornire este trecut ca 0 și indicele de sfârșit ca 10^6, astfel încât toate intervalele care au x sunt actualizate.

Acum, funcția de a găsi indexul cu Kth „1” în care „K” în acest caz va fi întotdeauna (n + 1) / 2, aceasta va funcționa foarte mult ca căutarea binară, puteți gândi la el ca o funcție de căutare binară recursivă pe un arbore de segment.

Să luăm un exemplu pentru a înțelege că setul nostru are în prezent elemente {1 4 7 8 9} și, prin urmare, este reprezentat de următorul arbore de segment.
 

Proiectarea eficientă a Introducerii și interogări mediane pe un set


Dacă suntem la un nod non-frunze, suntem siguri că are ambii copii, vedem dacă copilul din stânga are un număr mai mare sau egal de „k”, dacă da, suntem siguri că indicele nostru se află în subtree stânga, altfel, dacă subtree stânga are un număr mai mic de 1 decât K, atunci suntem siguri că indexul nostru se află în subtree dreapta. Facem acest lucru recursiv pentru a ajunge la indexul nostru și de acolo îl returnăm.

Algoritm   

1.findKth(node a b k) 2. If a != b 3. If segmentTree[ 2 * node ] >= k 4. return findKth(2*node a (a + b)/2 k) 5. else 6. return findKth(2*node + 1 (a + b)/2 + 1 b k - segmentTree[ 2 * node ]) 7. else 8. return a 


Funcția recursivă de mai sus rulează O (jurnal (max_elem)) .

C++
   // A C++ program to implement insert delete and    // median queries using segment tree    #include          #define maxn 3000005    #define max_elem 1000000    using     namespace     std  ;          // A global array to store segment tree.    // Note: Since it is global all elements are 0.    int     segmentTree  [  maxn  ];          // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    void     update  (  int     node       int     a       int     b       int     x       int     diff  )      {         // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x     )         {         // add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }             // If current node is non-leaf and 'x' is in its       // range       if     (  x     >=     a     &&     x      <=     b  )         {         // update both sub-trees left and right       update  (  node  *  2       a       (  a     +     b  )  /  2       x       diff  );         update  (  node  *  2     +     1       (  a     +     b  )  /  2     +     1       b       x       diff  );             // Finally update current node       segmentTree  [  node  ]     =     segmentTree  [  node  *  2  ]     +         segmentTree  [  node  *  2     +     1  ];         }      }          // Returns k'th node in segment tree    int     findKth  (  int     node       int     a       int     b       int     k  )      {         // non-leaf node will definitely have both       // children; left and right       if     (  a     !=     b  )         {         // If kth element lies in the left subtree       if     (  segmentTree  [  node  *  2  ]     >=     k  )         return     findKth  (  node  *  2       a       (  a     +     b  )  /  2       k  );             // If kth one lies in the right subtree       return     findKth  (  node  *  2     +     1       (  a     +     b  )  /  2     +     1           b       k     -     segmentTree  [  node  *  2  ]);         }             // if at a leaf node return the index it stores       // information about       return     (  segmentTree  [  node  ])  ?     a     :     -1  ;      }          // insert x in the set    void     insert  (  int     x  )      {         update  (  1       0       max_elem       x       1  );      }          // delete x from the set    void     delete  (  int     x  )      {         update  (  1       0       max_elem       x       -1  );      }          // returns median element of the set with odd    // cardinality only    int     median  ()      {         int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;         return     findKth  (  1       0       max_elem       k  );      }          // Driver code    int     main  ()      {         insert  (  1  );         insert  (  4  );         insert  (  7  );         cout      < <     'Median for the set {147} = '          < <     median  ()      < <     endl  ;         insert  (  8  );         insert  (  9  );         cout      < <     'Median for the set {14789} = '       < <     median  ()      < <     endl  ;         delete  (  1  );         delete  (  8  );         cout      < <     'Median for the set {479} = '       < <     median  ()      < <     endl  ;         return     0  ;      }      
Java
   // A Java program to implement insert delete and    // median queries using segment tree    import     java.io.*  ;   class   GFG  {   public     static     int     maxn     =     3000005  ;   public     static     int     max_elem     =     1000000  ;   // A global array to store segment tree.    // Note: Since it is global all elements are 0.    public     static     int  []     segmentTree     =     new     int  [  maxn  ]  ;   // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    public     static     void     update  (  int     node       int     a       int     b           int     x       int     diff  )   {          // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x     )         {             // Add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       (  a     +     b  )     /     2       x       diff  );      update  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       x       diff  );             // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ]  ;      }   }   // Returns k'th node in segment tree    public     static     int     findKth  (  int     node       int     a           int     b       int     k  )   {          // Non-leaf node will definitely have both       // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree       if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a       (  a     +     b  )     /     2       k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       k     -     segmentTree  [  node     *     2  ]  );          }          // If at a leaf node return the index it stores       // information about       return     (  segmentTree  [  node  ]     !=     0  )     ?     a     :     -  1  ;   }   // Insert x in the set   public     static     void     insert  (  int     x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set    public     static     void     delete  (  int     x  )      {      update  (  1       0       max_elem       x       -  1  );      }   // Returns median element of the set   // with odd cardinality only    public     static     int     median  ()   {      int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;         return     findKth  (  1       0       max_elem       k  );   }   // Driver code    public     static     void     main  (  String  []     args  )   {      insert  (  1  );         insert  (  4  );         insert  (  7  );      System  .  out  .  println  (  'Median for the set {147} = '     +         median  ());      insert  (  8  );         insert  (  9  );      System  .  out  .  println  (  'Median for the set {14789} = '     +      median  ());      delete  (  1  );         delete  (  8  );         System  .  out  .  println  (  'Median for the set {479} = '     +         median  ());   }   }   // This code is contributed by avanitrachhadiya2155   
Python3
   # A Python3 program to implement insert delete and   # median queries using segment tree   maxn   =   3000005   max_elem   =   1000000   # A global array to store segment tree.   # Note: Since it is global all elements are 0.   segmentTree   =   [  0   for   i   in   range  (  maxn  )]   # Update 'node' and its children in segment tree.   # Here 'node' is index in segmentTree[] 'a' and   # 'b' are starting and ending indexes of range stored   # in current node.   # 'diff' is the value to be added to value 'x'.   def   update  (  node     a     b     x     diff  ):   global   segmentTree   # If current node is a leaf node   if   (  a   ==   b   and   a   ==   x   ):   # add 'diff' and return   segmentTree  [  node  ]   +=   diff   return   # If current node is non-leaf and 'x' is in its   # range   if   (  x   >=   a   and   x    <=   b  ):   # update both sub-trees left and right   update  (  node   *   2     a     (  a   +   b  )  //  2     x     diff  )   update  (  node   *   2   +   1     (  a   +   b  )  //  2   +   1     b     x     diff  )   # Finally update current node   segmentTree  [  node  ]   =   segmentTree  [  node   *   2  ]   +   segmentTree  [  node   *   2   +   1  ]   # Returns k'th node in segment tree   def   findKth  (  node     a     b     k  ):   global   segmentTree   # non-leaf node will definitely have both   # children left and right   if   (  a   !=   b  ):   # If kth element lies in the left subtree   if   (  segmentTree  [  node   *   2  ]   >=   k  ):   return   findKth  (  node   *   2     a     (  a   +   b  )  //  2     k  )   # If kth one lies in the right subtree   return   findKth  (  node   *   2   +   1     (  a   +   b  )  //  2   +   1     b     k   -   segmentTree  [  node   *   2  ])   # if at a leaf node return the index it stores   # information about   return   a   if   (  segmentTree  [  node  ])   else   -  1   # insert x in the set   def   insert  (  x  ):   update  (  1     0     max_elem     x     1  )   # delete x from the set   def   delete  (  x  ):   update  (  1     0     max_elem     x     -  1  )   # returns median element of the set with odd   # cardinality only   def   median  ():   k   =   (  segmentTree  [  1  ]   +   1  )   //   2   return   findKth  (  1     0     max_elem     k  )   # Driver code   if   __name__   ==   '__main__'  :   insert  (  1  )   insert  (  4  )   insert  (  7  )   print  (  'Median for the set {147} ='    median  ())   insert  (  8  )   insert  (  9  )   print  (  'Median for the set {14789} ='    median  ())   delete  (  1  )   delete  (  8  )   print  (  'Median for the set {479} ='    median  ())   # This code is contributed by mohit kumar 29   
C#
   // A C# program to implement insert delete    // and median queries using segment tree    using     System  ;   class     GFG  {       public     static     int     maxn     =     3000005  ;   public     static     int     max_elem     =     1000000  ;   // A global array to store segment tree.    // Note: Since it is global all elements are 0.   public     static     int  []     segmentTree     =     new     int  [  maxn  ];   // Update 'node' and its children in segment tree.    // Here 'node' is index in segmentTree[] 'a' and    // 'b' are starting and ending indexes of range stored    // in current node.    // 'diff' is the value to be added to value 'x'.    public     static     void     update  (  int     node       int     a           int     b       int     x       int     diff  )   {          // If current node is a leaf node       if     (  a     ==     b     &&     a     ==     x  )      {          // Add 'diff' and return       segmentTree  [  node  ]     +=     diff  ;         return     ;         }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       (  a     +     b  )     /     2       x       diff  );      update  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       x       diff  );             // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ];      }   }   // Returns k'th node in segment tree   public     static     int     findKth  (  int     node       int     a        int     b       int     k  )   {          // Non-leaf node will definitely have both       // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree       if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a           (  a     +     b  )     /     2       k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       (  a     +     b  )     /     2     +     1        b       k     -     segmentTree  [  node     *     2  ]);      }          // If at a leaf node return the index it      // stores information about       if     (  segmentTree  [  node  ]     !=     0  )      {      return     a  ;      }      else      {      return     -  1  ;      }   }   // Insert x in the set   public     static     void     insert  (  int     x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set    public     static     void     delete  (  int     x  )      {      update  (  1       0       max_elem       x       -  1  );      }   // Returns median element of the set   // with odd cardinality only   public     static     int     median  ()   {      int     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;      return     findKth  (  1       0       max_elem       k  );   }   // Driver code   static     public     void     Main  ()   {      insert  (  1  );         insert  (  4  );         insert  (  7  );      Console  .  WriteLine  (  'Median for the set {147} = '     +      median  ());      insert  (  8  );         insert  (  9  );      Console  .  WriteLine  (  'Median for the set {14789} = '     +      median  ());      delete  (  1  );         delete  (  8  );         Console  .  WriteLine  (  'Median for the set {479} = '     +      median  ());   }   }   // This code is contributed by rag2127   
JavaScript
    <  script  >   // A Javascript program to implement insert delete and   // median queries using segment tree          let     maxn     =     3000005  ;      let     max_elem     =     1000000  ;          // A global array to store segment tree.      // Note: Since it is global all elements are 0.      let     segmentTree     =     new     Array  (  maxn  );      for  (  let     i  =  0  ;  i   <  maxn  ;  i  ++  )      {      segmentTree  [  i  ]  =  0  ;      }   // Update 'node' and its children in segment tree.   // Here 'node' is index in segmentTree[] 'a' and   // 'b' are starting and ending indexes of range stored   // in current node.   // 'diff' is the value to be added to value 'x'.   function     update  (  node    a    b    x    diff  )   {      // If current node is a leaf node      if     (  a     ==     b     &&     a     ==     x     )      {          // Add 'diff' and return      segmentTree  [  node  ]     +=     diff  ;      return     ;      }          // If current node is non-leaf and 'x'      // is in its range      if     (  x     >=     a     &&     x      <=     b  )      {          // Update both sub-trees left and right      update  (  node     *     2       a       Math  .  floor  ((  a     +     b  )     /     2  )     x       diff  );      update  (  node     *     2     +     1       Math  .  floor  ((  a     +     b  )     /     2  )     +     1        b       x       diff  );          // Finally update current node      segmentTree  [  node  ]     =     segmentTree  [  node     *     2  ]     +      segmentTree  [  node     *     2     +     1  ];      }   }   // Returns k'th node in segment tree   function     findKth  (  node    a    b    k  )   {      // Non-leaf node will definitely have both      // children; left and right      if     (  a     !=     b  )      {          // If kth element lies in the left subtree      if     (  segmentTree  [  node     *     2  ]     >=     k  )      {      return     findKth  (  node     *     2       a       Math  .  floor  ((  a     +     b  )     /     2  )     k  );      }          // If kth one lies in the right subtree      return     findKth  (  node     *     2     +     1       Math  .  floor  ((  a     +     b  )     /     2  )     +     1        b       k     -     segmentTree  [  node     *     2  ]);          }          // If at a leaf node return the index it stores      // information about      return     (  segmentTree  [  node  ]     !=     0  )     ?     a     :     -  1  ;   }   // Insert x in the set   function     insert  (  x  )   {      update  (  1       0       max_elem       x       1  );   }   // Delete x from the set   function     delet  (  x  )   {      update  (  1       0       max_elem       x       -  1  );   }   // Returns median element of the set   // with odd cardinality only   function     median  ()   {      let     k     =     (  segmentTree  [  1  ]     +     1  )     /     2  ;      return     findKth  (  1       0       max_elem       k  );       }   // Driver code   insert  (  1  );   insert  (  4  );   insert  (  7  );   document  .  write  (  'Median for the set {147} = '     +      median  ()  +  '  
'
); insert ( 8 ); insert ( 9 ); document . write ( 'Median for the set {14789} = ' + median () + '
'
); delet ( 1 ); delet ( 8 ); document . write ( 'Median for the set {479} = ' + median () + '
'
); // This code is contributed by unknown2108 < /script>

Ieșire: 

Median for the set {147} = 4 Median for the set {14789} = 7 Median for the set {479} = 7 


Concluzie:  
Toate cele trei întrebări rulează O (jurnal (max_elem)) În acest caz, max_elem = 10^6 so log (max_elem) este aproximativ egal cu 20.
Arborele segmentului folosește O (max_elem) spaţiu.

Dacă interogarea de ștergere nu ar fi fost, problema s -ar fi putut face și cu un algoritm celebru Aici .