Adâncimea unui copac N-ari

Adâncimea unui copac N-ari

Având în vedere o arbore n-ary care conțin valori pozitive ale nodurilor, sarcina este de a găsi adâncime a copacului.
Nota: Un arbore n-ary este un arbore în care fiecare nod poate avea zero sau Mai mult nodurile copiilor. Spre deosebire de un arbore binar care are cel mult doi copii pe nod (stânga și dreapta) arborele n-ary permite mai multe ramuri sau copii pentru fiecare nod.

Exemple:

Intrare:

al doilea cel mai mare element-din-arborele-n-ary-2

Ieșire: 3
Explicaţie: Cea mai lungă cale de la rădăcină (nodul 81) la o frunză este fie 81 -> 26 -> 95, fie 81 -> 26 -> 86, oferind o adâncime maximă de 3.

Intrare:

operațiune-minimă-pentru-a face-fiecare-nod-frunză-egal-2

Ieșire: 2
Explicaţie: Cea mai lungă cale de la rădăcină (nodul 4) la orice frunză (nodurile 5 sau 7) este 2, deoarece necesită doar două niveluri de traversare.

Abordare:

Ideea este de a calcula adâncimea unui arbore N-ary recursiv inițializați adâncime maximă ca 0 apoi calculați recursiv adâncime pentru fiecare copil și ține evidența cea mai mare adâncime întâlnit. În cele din urmă adăugați 1 la adâncimea maximă (pentru nodul curent) și returnați rezultat . Această abordare ne asigură că găsim calea cea mai lungă de la rădăcină la orice nod frunză.

Arborele N-Ary poate fi traversat la fel ca un copac normal. Trebuie doar să luăm în considerare toți copiii unui nod dat și să apelăm recursiv acea funcție pe fiecare nod. 

C++
   // C++ Code to find the depth of an N-ary tree   #include          using     namespace     std  ;   class     Node     {   public  :      int     data  ;      vector   <  Node  *>     children  ;      Node  (  int     val  )     {      data     =     val  ;      }   };   // Recursive function to calculate maximum depth   int     maxDepth  (  Node  *     root  )     {          // If the node is null depth is 0      if     (  !  root  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find the maximum depth      for     (  auto     child     :     root  ->  children  )     {      depth     =     max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node      // in the depth count      return     depth     +     1  ;   }   int     main  ()     {      // Representation of given N-ary tree      // 1      // / |     // 2 3 4      // /     // 5 6      Node  *     root     =     new     Node  (  1  );      root  ->  children  .  push_back  (  new     Node  (  2  ));      root  ->  children  .  push_back  (  new     Node  (  3  ));      root  ->  children  .  push_back  (  new     Node  (  4  ));      root  ->  children  [  0  ]  ->  children  .  push_back  (  new     Node  (  5  ));      root  ->  children  [  2  ]  ->  children  .  push_back  (  new     Node  (  6  ));      cout      < <     maxDepth  (  root  );      return     0  ;   }   
Java
   // Java Code to find the depth of an N-ary tree   import     java.util.*  ;   class   Node     {      int     data  ;      List   <  Node  >     children  ;      Node  (  int     val  )     {      data     =     val  ;      children     =     new     ArrayList   <>  ();      }   }   // Recursive function to calculate   // maximum depth   class   GfG     {          static     int     maxDepth  (  Node     root  )     {      // If the node is null depth is 0      if     (  root     ==     null  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find      // the maximum depth      for     (  Node     child     :     root  .  children  )     {      depth     =     Math  .  max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node       // in the depth count      return     depth     +     1  ;      }      public     static     void     main  (  String  []     args  )     {      // Representation of given N-ary tree      // 1      // / |       // 2 3 4      // /       // 5 6      Node     root     =     new     Node  (  1  );      root  .  children  .  add  (  new     Node  (  2  ));      root  .  children  .  add  (  new     Node  (  3  ));      root  .  children  .  add  (  new     Node  (  4  ));      root  .  children  .  get  (  0  ).  children  .  add  (  new     Node  (  5  ));      root  .  children  .  get  (  2  ).  children  .  add  (  new     Node  (  6  ));      System  .  out  .  println  (  maxDepth  (  root  ));      }   }   
Python
   # Python Code to find the depth    # of an N-ary tree   class   Node  :   def   __init__  (  self     val  ):   self  .  data   =   val   self  .  children   =   []   # Recursive function to calculate   # maximum depth   def   max_depth  (  root  ):   # If the node is None depth is 0   if   not   root  :   return   0   depth   =   0   # Recur for all children and    # find the maximum depth   for   child   in   root  .  children  :   depth   =   max  (  depth     max_depth  (  child  ))   # Add 1 to include the current   # node in the depth count   return   depth   +   1   if   __name__   ==   '__main__'  :   # Representation of given N-ary tree   # 1   # / |    # 2 3 4   # /    # 5 6   root   =   Node  (  1  )   root  .  children  .  append  (  Node  (  2  ))   root  .  children  .  append  (  Node  (  3  ))   root  .  children  .  append  (  Node  (  4  ))   root  .  children  [  0  ]  .  children  .  append  (  Node  (  5  ))   root  .  children  [  2  ]  .  children  .  append  (  Node  (  6  ))   print  (  max_depth  (  root  ))   
C#
   // C# Code to find the depth of an N-ary tree   using     System  ;   using     System.Collections.Generic  ;   class     Node     {      public     int     data  ;      public     List   <  Node  >     children  ;      public     Node  (  int     val  )     {      data     =     val  ;      children     =     new     List   <  Node  >  ();      }   }   // Recursive function to calculate   // maximum depth   class     GfG     {          static     int     MaxDepth  (  Node     root  )     {      // If the node is null depth is 0      if     (  root     ==     null  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find the maximum depth      foreach     (  Node     child     in     root  .  children  )     {      depth     =     Math  .  Max  (  depth       MaxDepth  (  child  ));      }      // Add 1 to include the current      // node in the depth count      return     depth     +     1  ;      }      static     void     Main  (  string  []     args  )     {      // Representation of given N-ary tree      // 1      // / |       // 2 3 4      // /       // 5 6      Node     root     =     new     Node  (  1  );      root  .  children  .  Add  (  new     Node  (  2  ));      root  .  children  .  Add  (  new     Node  (  3  ));      root  .  children  .  Add  (  new     Node  (  4  ));      root  .  children  [  0  ].  children  .  Add  (  new     Node  (  5  ));      root  .  children  [  2  ].  children  .  Add  (  new     Node  (  6  ));      Console  .  WriteLine  (  MaxDepth  (  root  ));      }   }   
JavaScript
   // JavaScript Code to find the depth    // of an N-ary tree   class     Node     {      constructor  (  val  )     {      this  .  data     =     val  ;      this  .  children     =     [];      }   }   // Recursive function to calculate    // maximum depth   function     maxDepth  (  root  )     {      // If the node is null depth is 0      if     (  !  root  )     {      return     0  ;      }      let     depth     =     0  ;      // Recur for all children and find      // the maximum depth      for     (  let     child     of     root  .  children  )     {      depth     =     Math  .  max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node       // in the depth count      return     depth     +     1  ;   }   // Representation of given N-ary tree   // 1   // / |    // 2 3 4   // /    // 5 6   const     root     =     new     Node  (  1  );   root  .  children  .  push  (  new     Node  (  2  ));   root  .  children  .  push  (  new     Node  (  3  ));   root  .  children  .  push  (  new     Node  (  4  ));   root  .  children  [  0  ].  children  .  push  (  new     Node  (  5  ));   root  .  children  [  2  ].  children  .  push  (  new     Node  (  6  ));   console  .  log  (  maxDepth  (  root  ));   

Ieșire
3 

Complexitatea timpului: O(n) deoarece fiecare nod este vizitat o dată, unde n este numărul total de noduri din arborele N-ary.
Spațiu auxiliar: O(h) unde h este înălțimea arborelui din cauza utilizării recursive a stivei de apeluri.

Creați un test