Encontre todas as sequências binárias de comprimento par com a mesma soma dos bits da primeira e da segunda metade

Encontre todas as sequências binárias de comprimento par com a mesma soma dos bits da primeira e da segunda metade

Dado um número n, encontre todas as sequências binárias de comprimento 2n tais que a soma dos primeiros n bits seja igual à soma dos últimos n bits.
Exemplos: 
 

  Input:    N = 2   Output:    0101 1111 1001 0110 0000 1010   Input:    N = 3   Output:    011011 001001 011101 010001 101011 111111 110011 101101 100001 110101 001010 011110 010010 001100 000000 010100 101110 100010 110110 100100  


 


A ideia é corrigir o primeiro e o último bits e depois recorrer aos 2*(n-1) bits restantes. Existem quatro possibilidades quando corrigimos o primeiro e o último bits -
 

  1. O primeiro e o último bits são 1 n - 1 bits restantes em ambos os lados também devem ter a mesma soma.
  2. O primeiro e o último bits são 0 restantes n - 1 bits em ambos os lados também devem ter a mesma soma.
  3. O primeiro bit é 1 e o último bit é 0. A soma dos n-1 bits restantes no lado esquerdo deve ser 1 a menos que a soma dos n-1 bits no lado direito.
  4. O primeiro bit é 0 e o último bit é 1. A soma dos n-1 bits restantes no lado esquerdo deve ser 1 a mais que a soma dos n-1 bits no lado direito.


Abaixo está a implementação da ideia acima –
 

C++
   // C++ program to print even length binary sequences   // whose sum of first and second half bits is same   #include          using     namespace     std  ;   // Function to print even length binary sequences   // whose sum of first and second half bits is same   // diff --> difference between sums of first n bits   // and last n bits   // out --> output array   // start --> starting index   // end --> ending index   void     findAllSequences  (  int     diff       char  *     out       int     start       int     end  )   {      // We can't cover difference of more than n with 2n bits      if     (  abs  (  diff  )     >     (  end     -     start     +     1  )     /     2  )      return  ;      // if all bits are filled      if     (  start     >     end  )      {      // if sum of first n bits and last n bits are same      if     (  diff     ==     0  )      cout      < <     out      < <     ' '  ;      return  ;      }      // fill first bit as 0 and last bit as 1      out  [  start  ]     =     '0'       out  [  end  ]     =     '1'  ;      findAllSequences  (  diff     +     1       out       start     +     1       end     -     1  );      // fill first and last bits as 1      out  [  start  ]     =     out  [  end  ]     =     '1'  ;      findAllSequences  (  diff       out       start     +     1       end     -     1  );      // fill first and last bits as 0      out  [  start  ]     =     out  [  end  ]     =     '0'  ;      findAllSequences  (  diff       out       start     +     1       end     -     1  );      // fill first bit as 1 and last bit as 0      out  [  start  ]     =     '1'       out  [  end  ]     =     '0'  ;      findAllSequences  (  diff     -     1       out       start     +     1       end     -     1  );   }   // Driver program   int     main  ()   {      // input number      int     n     =     2  ;      // allocate string containing 2*n characters      char     out  [  2     *     n     +     1  ];      // null terminate output array      out  [  2     *     n  ]     =     ''  ;      findAllSequences  (  0       out       0       2  *  n     -     1  );      return     0  ;   }   
Java
   // Java program to print even length binary    // sequences whose sum of first and second   // half bits is same   import     java.io.*  ;   import     java.util.*  ;   class   GFG      {      // Function to print even length binary sequences      // whose sum of first and second half bits is same          // diff --> difference between sums of first n bits      // and last n bits      // out --> output array      // start --> starting index      // end --> ending index      static     void     findAllSequences  (  int     diff       char     out  []           int     start       int     end  )      {      // We can't cover difference of more       // than n with 2n bits      if     (  Math  .  abs  (  diff  )     >     (  end     -     start     +     1  )     /     2  )      return  ;          // if all bits are filled      if     (  start     >     end  )      {      // if sum of first n bits and      // last n bits are same      if     (  diff     ==     0  )      {      System  .  out  .  print  (  out  );      System  .  out  .  print  (  ' '  );      }         return  ;      }          // fill first bit as 0 and last bit as 1      out  [  start  ]     =     '0'  ;      out  [  end  ]     =     '1'  ;      findAllSequences  (  diff     +     1       out       start     +     1       end     -     1  );          // fill first and last bits as 1      out  [  start  ]     =     out  [  end  ]     =     '1'  ;      findAllSequences  (  diff       out       start     +     1       end     -     1  );          // fill first and last bits as 0      out  [  start  ]     =     out  [  end  ]     =     '0'  ;      findAllSequences  (  diff       out       start     +     1       end     -     1  );          // fill first bit as 1 and last bit as 0      out  [  start  ]     =     '1'  ;      out  [  end  ]     =     '0'  ;      findAllSequences  (  diff     -     1       out       start     +     1       end     -     1  );      }          // Driver program      public     static     void     main     (  String  []     args  )         {      // input number      int     n     =     2  ;          // allocate string containing 2*n characters      char  []     out     =     new     char  [  2     *     n     +     1  ]  ;          // null terminate output array      out  [  2     *     n  ]     =     ''  ;          findAllSequences  (  0       out       0       2  *  n     -     1  );      }   }   // This code is contributed by Pramod Kumar   
Python3
   # Python3 program to print even length binary sequences   # whose sum of first and second half bits is same   # Function to print even length binary sequences   # whose sum of first and second half bits is same   # diff --> difference between sums of first n bits   # and last n bits   # out --> output array   # start --> starting index   # end --> ending index   def   findAllSequences  (  diff     out     start     end  ):   # We can't cover difference of more than n with 2n bits   if   (  abs  (  diff  )   >   (  end   -   start   +   1  )   //   2  ):   return  ;   # if all bits are filled   if   (  start   >   end  ):   # if sum of first n bits and last n bits are same   if   (  diff   ==   0  ):   print  (  ''  .  join  (  list  (  out  ))  end  =  ' '  );   return  ;   # fill first bit as 0 and last bit as 1   out  [  start  ]   =   '0'  ;   out  [  end  ]   =   '1'  ;   findAllSequences  (  diff   +   1     out     start   +   1     end   -   1  );   # fill first and last bits as 1   out  [  start  ]   =   out  [  end  ]   =   '1'  ;   findAllSequences  (  diff     out     start   +   1     end   -   1  );   # fill first and last bits as 0   out  [  start  ]   =   out  [  end  ]   =   '0'  ;   findAllSequences  (  diff     out     start   +   1     end   -   1  );   # fill first bit as 1 and last bit as 0   out  [  start  ]   =   '1'  ;   out  [  end  ]   =   '0'  ;   findAllSequences  (  diff   -   1     out     start   +   1     end   -   1  );   # Driver program   # input number   n   =   2  ;   # allocate string containing 2*n characters   out  =  [  ''  ]  *  (  2  *  n  );   findAllSequences  (  0     out     0     2  *  n   -   1  );   # This code is contributed by mits   
C#
   // C# program to print even length binary    // sequences whose sum of first and second   // half bits is same   using     System  ;   class     GFG     {          // Function to print even length binary      // sequences whose sum of first and       // second half bits is same      // diff --> difference between sums of      // first n bits      // and last n bits      // out --> output array      // start --> starting index      // end --> ending index      static     void     findAllSequences  (  int     diff        char     []  outt       int     start       int     end  )      {          // We can't cover difference of       // more than n with 2n bits      if     (  Math  .  Abs  (  diff  )     >     (  end     -     start      +     1  )     /     2  )      return  ;      // if all bits are filled      if     (  start     >     end  )      {          // if sum of first n bits and      // last n bits are same      if     (  diff     ==     0  )      {      Console  .  Write  (  outt  );      Console  .  Write  (  ' '  );      }         return  ;      }      // fill first bit as 0 and last bit      // as 1      outt  [  start  ]     =     '0'  ;      outt  [  end  ]     =     '1'  ;      findAllSequences  (  diff     +     1       outt           start     +     1       end     -     1  );      // fill first and last bits as 1      outt  [  start  ]     =     outt  [  end  ]     =     '1'  ;      findAllSequences  (  diff       outt           start     +     1       end     -     1  );      // fill first and last bits as 0      outt  [  start  ]     =     outt  [  end  ]     =     '0'  ;      findAllSequences  (  diff       outt           start     +     1       end     -     1  );      // fill first bit as 1 and last       // bit as 0      outt  [  start  ]     =     '1'  ;      outt  [  end  ]     =     '0'  ;      findAllSequences  (  diff     -     1       outt        start     +     1       end     -     1  );      }          // Driver program      public     static     void     Main     ()         {          // input number      int     n     =     2  ;      // allocate string containing 2*n       // characters      char     []  outt     =     new     char  [  2     *     n     +     1  ];      // null terminate output array      outt  [  2     *     n  ]     =     ''  ;      findAllSequences  (  0       outt       0       2  *  n     -     1  );      }   }   // This code is contributed by nitin mittal.   
PHP
      // PHP program to print even length binary sequences   // whose sum of first and second half bits is same   // Function to print even length binary sequences   // whose sum of first and second half bits is same   // diff --> difference between sums of first n bits   // and last n bits   // out --> output array   // start --> starting index   // end --> ending index   function   findAllSequences  (  $diff     $out     $start     $end  )   {   // We can't cover difference of more than n with 2n bits   if   (  abs  (  $diff  )   >   (  int  )((  $end   -   $start   +   1  )   /   2  ))   return  ;   // if all bits are filled   if   (  $start   >   $end  )   {   // if sum of first n bits and last n bits are same   if   (  $diff   ==   0  )   print  (  implode  (  ''    $out  )  .  ' '  );   return  ;   }   // fill first bit as 0 and last bit as 1   $out  [  $start  ]   =   '0'  ;   $out  [  $end  ]   =   '1'  ;   findAllSequences  (  $diff   +   1     $out     $start   +   1     $end   -   1  );   // fill first and last bits as 1   $out  [  $start  ]   =   $out  [  $end  ]   =   '1'  ;   findAllSequences  (  $diff     $out     $start   +   1     $end   -   1  );   // fill first and last bits as 0   $out  [  $start  ]   =   $out  [  $end  ]   =   '0'  ;   findAllSequences  (  $diff     $out     $start   +   1     $end   -   1  );   // fill first bit as 1 and last bit as 0   $out  [  $start  ]   =   '1'  ;   $out  [  $end  ]   =   '0'  ;   findAllSequences  (  $diff   -   1     $out     $start   +   1     $end   -   1  );   }   // Driver program   // input number   $n   =   2  ;   // allocate string containing 2*n characters   $out  =  array_fill  (  0    2  *  $n    ''  );   findAllSequences  (  0     $out     0     2  *  $n   -   1  );   // This code is contributed by chandan_jnu   ?>   
JavaScript
    <  script  >      // JavaScript program to print even length binary      // sequences whose sum of first and second      // half bits is same          // Function to print even length binary      // sequences whose sum of first and      // second half bits is same          // diff --> difference between sums of      // first n bits      // and last n bits      // out --> output array      // start --> starting index      // end --> ending index      function     findAllSequences  (  diff       outt       start       end  )      {          // We can't cover difference of      // more than n with 2n bits      if     (  Math  .  abs  (  diff  )     >     parseInt  ((  end     -     start     +     1  )     /     2       10  ))      return  ;          // if all bits are filled      if     (  start     >     end  )      {          // if sum of first n bits and      // last n bits are same      if     (  diff     ==     0  )      {      document  .  write  (  outt  .  join  (  ''  ));      document  .  write  (  ' '  );      }      return  ;      }          // fill first bit as 0 and last bit      // as 1      outt  [  start  ]     =     '0'  ;      outt  [  end  ]     =     '1'  ;      findAllSequences  (  diff     +     1       outt       start     +     1       end     -     1  );          // fill first and last bits as 1      outt  [  start  ]     =     outt  [  end  ]     =     '1'  ;      findAllSequences  (  diff       outt       start     +     1       end     -     1  );          // fill first and last bits as 0      outt  [  start  ]     =     outt  [  end  ]     =     '0'  ;      findAllSequences  (  diff       outt       start     +     1       end     -     1  );          // fill first bit as 1 and last      // bit as 0      outt  [  start  ]     =     '1'  ;      outt  [  end  ]     =     '0'  ;      findAllSequences  (  diff     -     1       outt       start     +     1       end     -     1  );      }          // input number      let     n     =     2  ;      // allocate string containing 2*n      // characters      let     outt     =     new     Array  (  2     *     n     +     1  );      // null terminate output array      outt  [  2     *     n  ]     =     ''  ;      findAllSequences  (  0       outt       0       2  *  n     -     1  );        <  /script>   

Saída
0101 1111 1001 0110 0000 1010  


Complexidade de tempo: O((4 ^ N                         )* N)

4 ^ N por causa de 4 chamadas recursivas e N (simplificado de 2N) pelo tempo gasto na impressão de strings de tamanho 2N


Espaço Auxiliar: SOBRE) 

Existe outra abordagem pela qual geramos todas as strings possíveis de comprimento n e as armazenamos em uma lista em um índice que representa sua soma. Em seguida, iteramos por cada lista e geramos as strings de tamanho 2n, imprimindo cada string com todas as outras strings da lista somando o mesmo valor.

C++
   // C++ program to implement the approach   #include          using     namespace     std  ;   //function that generates the sequence   void     generateSequencesWithSum  (      int     n       vector   <  vector   <  string  >     >&     sumToString        vector   <  string  >     sequence       int     sumSoFar  )   {      // Base case if there are no more binary digits to      // include      if     (  n     ==     0  )     {      // add permutation to list of sequences with sum      // corresponding to index      string     seq     =     ''  ;      for     (  int     i     =     0  ;     i      <     sequence  .  size  ();     i  ++  )     {      seq     =     seq     +     sequence  [  i  ];      }      vector   <  string  >     x     =     sumToString  [  sumSoFar  ];      x  .  push_back  (  seq  );      sumToString  [  sumSoFar  ]     =     x  ;      return  ;      }      // Generate sequence +0      sequence  .  push_back  (  '0'  );      generateSequencesWithSum  (  n     -     1       sumToString       sequence        sumSoFar  );      sequence  .  erase  (  sequence  .  begin  ());      // Generate sequence +1      sequence  .  push_back  (  '1'  );      generateSequencesWithSum  (  n     -     1       sumToString       sequence        sumSoFar     +     1  );      sequence  .  erase  (  sequence  .  begin  ());   }   // function to form permutations of the sequences   void     permuteSequences  (  vector   <  vector   <  string  >     >     sumToString  )   {      // There are 2^n substring in this list of lists      for     (  int     sumIndexArr     =     0  ;      sumIndexArr      <     sumToString  .  size  ();     sumIndexArr  ++  )     {      // Append      for     (  int     sequence1     =     0  ;      sequence1      <     sumToString  [  sumIndexArr  ].  size  ();      sequence1  ++  )     {      for     (  int     sequence2     =     0  ;      sequence2       <     sumToString  [  sumIndexArr  ].  size  ();      sequence2  ++  )     {      if     (  sumIndexArr     ==     sumToString  .  size  ()     -     1      &&     sequence1      ==     sumToString  [  sumIndexArr  ]      .  size  ()      -     1      &&     sequence2      ==     sumToString  [  sumIndexArr  ]      .  size  ()      -     1  )     {      cout      < <     '1111 '  ;      }      else     {      cout      < <     sumToString  [  sumIndexArr  ]      [  sequence1  ]      +     sumToString  [  sumIndexArr  ]      [  sequence2  ]       < <     ' '  ;      }      }      }      }   }   // function that finds all the subsequences   void     findAllSequences  (  int     n  )   {      vector   <  vector   <  string  >     >     sumToString  ;      for     (  int     i     =     0  ;     i      <     n     +     1  ;     i  ++  )     {      sumToString  .  push_back  (      vector   <  string  >  ());     // list of strings      // where index      // represents sum      }      generateSequencesWithSum  (  n       sumToString        vector   <  string  >  ()     0  );      permuteSequences  (  sumToString  );   }   // Driver Code   int     main  ()   {      // Function Call      findAllSequences  (  2  );      return     0  ;   }   // this code is contributed by phasing17   
Java
   // Java program to implement the approach   import     java.util.*  ;   class   GFG     {      // function that finds all the subsequences      static     void     findAllSequences  (  int     n  )      {      ArrayList   <  ArrayList   <  String  >     >     sumToString      =     new     ArrayList   <  ArrayList   <  String  >     >  ();      for     (  int     i     =     0  ;     i      <     n     +     1  ;     i  ++  )     {      sumToString  .  add  (      new     ArrayList   <  String  >  ());     // list of strings      // where index      // represents sum      }      generateSequencesWithSum  (      n       sumToString       new     ArrayList   <  String  >  ()     0  );      permuteSequences  (  sumToString  );      }      static     void     generateSequencesWithSum  (      int     n       ArrayList   <  ArrayList   <  String  >     >     sumToString        ArrayList   <  String  >     sequence       int     sumSoFar  )      {      // Base case if there are no more binary digits to      // include      if     (  n     ==     0  )     {      // add permutation to list of sequences with sum      // corresponding to index      String     seq     =     ''  ;      for     (  int     i     =     0  ;     i      <     sequence  .  size  ();     i  ++  )     {      seq     =     seq     +     sequence  .  get  (  i  );      }      ArrayList   <  String  >     x     =     sumToString  .  get  (  sumSoFar  );      x  .  add  (  seq  );      sumToString  .  set  (  sumSoFar       x  );      return  ;      }      // Generate sequence +0      sequence  .  add  (  '0'  );      generateSequencesWithSum  (  n     -     1       sumToString        sequence       sumSoFar  );      sequence  .  remove  (  0  );      // Generate sequence +1      sequence  .  add  (  '1'  );      generateSequencesWithSum  (  n     -     1       sumToString        sequence       sumSoFar     +     1  );      sequence  .  remove  (  0  );      }      // function to form permutations of the sequences      static     void     permuteSequences  (      ArrayList   <  ArrayList   <  String  >     >     sumToString  )      {      // There are 2^n substring in this list of lists      for     (  int     sumIndexArr     =     0  ;      sumIndexArr      <     sumToString  .  size  ();      sumIndexArr  ++  )     {      // Append      for     (  int     sequence1     =     0  ;      sequence1       <     sumToString  .  get  (  sumIndexArr  ).  size  ();      sequence1  ++  )     {      for     (  int     sequence2     =     0  ;      sequence2       <     sumToString  .  get  (  sumIndexArr  ).  size  ();      sequence2  ++  )     {      if     (  sumIndexArr      ==     sumToString  .  size  ()     -     1      &&     sequence1      ==     sumToString      .  get  (  sumIndexArr  )      .  size  ()      -     1      &&     sequence2      ==     sumToString      .  get  (  sumIndexArr  )      .  size  ()      -     1  )     {      System  .  out  .  print  (  '1111'  );      }      else     {      System  .  out  .  println  (      sumToString  .  get  (  sumIndexArr  )      .  get  (  sequence1  )      +     sumToString  .  get  (  sumIndexArr  )      .  get  (  sequence2  ));      }      }      }      }      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      // Function Call      findAllSequences  (  2  );      }      // this code is contributed by phasing17   }   
Python3
   def   findAllSequences  (  n  ):   sumToString   =   [[]   for   x   in   range  (  n  +  1  )]   # list of strings where index represents sum   generateSequencesWithSum  (  n     sumToString     []   0  )   permuteSequences  (  sumToString  )   def   generateSequencesWithSum  (  n     sumToString     sequence     sumSoFar  ):   #Base case if there are no more binary digits to include   if   n   ==   0  :   sumToString  [  sumSoFar  ]  .  append  (  ''  .  join  (  sequence  ))   #add permutation to list of sequences with sum corresponding to index   return   #Generate sequence +0   sequence  .  append  (  '0'  )   generateSequencesWithSum  (  n  -  1     sumToString     sequence     sumSoFar  )   sequence  .  pop  ()   #Generate sequence +1   sequence  .  append  (  '1'  )   generateSequencesWithSum  (  n  -  1     sumToString     sequence     sumSoFar  +  1  )   sequence  .  pop  ()   def   permuteSequences  (  sumToString  ):   #There are 2^n substring in this list of lists   for   sumIndexArr   in   sumToString  :   # Append   for   sequence1   in   sumIndexArr  :   for   sequence2   in   sumIndexArr  :   print  (  sequence1   +   sequence2  )   findAllSequences  (  2  )   #Contribution by Xavier Jean Baptiste   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      static     void     findAllSequences  (  int     n  )      {      List   <  List   <  string  >>     sumToString     =     new     List   <  List   <  string  >>  ();      for  (  int     i     =     0  ;     i      <     n     +     1  ;     i  ++  )      {      sumToString  .  Add  (  new     List   <  string  >  ());     // list of strings where index represents sum      }      generateSequencesWithSum  (  n       sumToString       new     List   <  string  >  ()     0  );      permuteSequences  (  sumToString  );      }      static     void     generateSequencesWithSum  (  int     n       List   <  List   <  string  >>     sumToString       List   <  string  >     sequence       int     sumSoFar  )      {      // Base case if there are no more binary digits to include      if  (  n     ==     0  )      {      //add permutation to list of sequences with sum corresponding to index      string     seq     =     ''  ;      for  (  int     i     =     0  ;     i      <     sequence  .  Count  ;     i  ++  )      {      seq     =     seq     +     sequence  [  i  ];      }      sumToString  [  sumSoFar  ].  Add  (  seq  );      return  ;      }      // Generate sequence +0      sequence  .  Add  (  '0'  );      generateSequencesWithSum  (  n  -  1       sumToString       sequence       sumSoFar  );      sequence  .  RemoveAt  (  0  );      // Generate sequence +1      sequence  .  Add  (  '1'  );      generateSequencesWithSum  (  n  -  1       sumToString       sequence       sumSoFar  +  1  );      sequence  .  RemoveAt  (  0  );      }      static     void     permuteSequences  (  List   <  List   <  string  >>     sumToString  )      {      // There are 2^n substring in this list of lists      for  (  int     sumIndexArr     =     0  ;     sumIndexArr      <     sumToString  .  Count  ;     sumIndexArr  ++  )      {      // Append      for  (  int     sequence1     =     0  ;     sequence1      <     sumToString  [  sumIndexArr  ].  Count  ;     sequence1  ++  )      {      for  (  int     sequence2     =     0  ;     sequence2      <     sumToString  [  sumIndexArr  ].  Count  ;     sequence2  ++  )      {      if  (  sumIndexArr     ==     sumToString  .  Count  -  1     &&     sequence1     ==     sumToString  [  sumIndexArr  ].  Count  -  1     &&     sequence2     ==     sumToString  [  sumIndexArr  ].  Count  -  1  )      {      Console  .  Write  (  '1111'  );      }      else      {      Console  .  WriteLine  (  sumToString  [  sumIndexArr  ][  sequence1  ]     +     sumToString  [  sumIndexArr  ][  sequence2  ]);      }      }      }      }      }      static     void     Main  ()     {      findAllSequences  (  2  );      }   }   // This code is contributed by divyesh072019.   
JavaScript
    <  script  >      function     findAllSequences  (  n  )      {      let     sumToString     =     [];      for  (  let     i     =     0  ;     i      <     n     +     1  ;     i  ++  )      {      sumToString  .  push  ([]);     // list of strings where index represents sum      }      generateSequencesWithSum  (  n       sumToString       []     0  );      permuteSequences  (  sumToString  );      }          function     generateSequencesWithSum  (  n       sumToString       sequence       sumSoFar  )      {      // Base case if there are no more binary digits to include      if  (  n     ==     0  )      {      //add permutation to list of sequences with sum corresponding to index      sumToString  [  sumSoFar  ].  push  (  sequence  .  join  (  ''  ));      return  ;      }      // Generate sequence +0      sequence  .  push  (  '0'  );      generateSequencesWithSum  (  n  -  1       sumToString       sequence       sumSoFar  );      sequence  .  shift  ();      // Generate sequence +1      sequence  .  push  (  '1'  );      generateSequencesWithSum  (  n  -  1       sumToString       sequence       sumSoFar  +  1  );      sequence  .  shift  ();      }          function     permuteSequences  (  sumToString  )      {      // There are 2^n substring in this list of lists      for  (  let     sumIndexArr     =     0  ;     sumIndexArr      <     sumToString  .  length  ;     sumIndexArr  ++  )      {      // Append      for  (  let     sequence1     =     0  ;     sequence1      <     sumToString  [  sumIndexArr  ].  length  ;     sequence1  ++  )      {      for  (  let     sequence2     =     0  ;     sequence2      <     sumToString  [  sumIndexArr  ].  length  ;     sequence2  ++  )         {      if  (  sumIndexArr     ==     sumToString  .  length  -  1     &&     sequence1     ==     sumToString  [  sumIndexArr  ].  length  -  1     &&     sequence2     ==     sumToString  [  sumIndexArr  ].  length  -  1  )      {      document  .  write  (  '1111'  );      }      else      {      document  .  write  (  sumToString  [  sumIndexArr  ][  sequence1  ]     +     sumToString  [  sumIndexArr  ][  sequence2  ]     +     ' 
'
); } } } } } findAllSequences ( 2 ); // This code is contributed by decode2207. < /script>

Saída
0000 0101 0110 1001 1010 1111  

Análise de complexidade de tempo:

gerarSequencesWithSum = O((2 N )*N)

  • 2 N : geramos todas as permutações de strings binárias de tamanho N
  • N: converte a lista de caracteres em uma string e armazena em array. Isso é feito no caso base.

permutarSequências = O((2 N ) *N!/(N/2)! 2 *N)

  • 2 N : iteramos por toda a string gerada de tamanho n
  • N!/(N/2)! 2 : Este é um pouco difícil de explicar

vamos tomar N = 2 como exemplo. Nossa matriz de sequência possível de tamanho n seria:

índice de matriz 1 2
lista de cordas 00 0110 11

Na lista de strings cujo índice representa a soma, obtemos a contagem de strings de tamanho 2n usando a fórmula 'n escolhe k'. No nosso caso seria nCk *nCk onde k representa o número de 1s em cada metade da string de tamanho 2n:

k = 0 temos (2C0)^2 = 1 string (0000)

k =  1 temos (2C1)^2 string = 4 strings (0101 0110 1001 1010)

k = 2 temos (2c2) ^ 2 = 1 string (1111)

Obtemos nossa lista mais longa de strings quando k = N/2 portanto N C N/2 =N!/[(N/2)! * (N - N/2)!]  que simplifica para N C N/2 =N!/(N/2)! 2

Portanto, para cada elemento, devemos iterar no máximo N C N/2 para formar cordas de comprimento 2N

Sem prova formal, se representarmos graficamente 2^N e N!/(N/2)! 2 vemos que 2 N tem uma taxa de crescimento mais rápida do que o último. Portanto O(2 N *N!/(N/2) 2 ) < O(2 N *2 N ) = O(2 2n ) = O(4 N )

Encontre todas as sequências binárias de comprimento par com a mesma soma dos bits da primeira e da segunda metadeGráfico de 2^x e nC(n/2)
  • N: devemos imprimir cada string de tamanho 2N

Finalmente, podemos ignorar a complexidade de tempo de generateSequencesWithSum porque permuteSequence é o termo principal

Complexidade de tempo: O(2 N *N!/(N/2)! 2 * N) (melhor que a primeira solução de O((4^N) * N veja a explicação acima para mais detalhes)

Espaço auxiliar : O(2 N ) porque armazenamos todas as permutações de strings binárias de tamanho N


 

C++
   #include       using     namespace     std  ;   class     FirstHalf     {      public  :      string     data  ;      int     sum  ;      FirstHalf  (  string     data       int     sum  )     {      this  ->  data     =     data  ;      this  ->  sum     =     sum  ;      }   };   // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum   map   <  int       vector   <  string  >>     mp  ;   // first N-half bits   vector   <  FirstHalf  >     firstHalf  ;   // function to find sum of the bits from a String   int     sumOfString  (  string     s  )     {      int     sum     =     0  ;      // ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1)      for  (  auto     c  :     s  )     {      sum     +=     (  c     -     '0'  );      }      return     sum  ;   }   void     perm  (  string     p       char  *     bin       int     level       int     n  )      {      // p: processed string(processed permutation at current level)      // bin: {'0' '1'}      // l: current level of recursion tree (leaf/solution level = 0)      // n: total levels      if  (  level     ==     0  )         {      // at solution level find sum of the current permutation      int     sum     =     sumOfString  (  p  );      // store current permutation to firstHalf list      firstHalf  .  push_back  (  FirstHalf  (  p       sum  ));      // put current permutation to its respective sum value      mp  [  sum  ].  push_back  (  p  );      return  ;      }      // generate calls for permutation      // working: first solution with all 0s       // then replacing last 0 with 1 and so on...      for  (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      char     c     =     bin  [  i  ];      perm  (  p  +  c       bin       level  -1       n  );      }   }   void     result  ()     {      int     i     =     0  ;      for  (  auto     first  :     firstHalf  )      {      // for each firstHalf string      // find sum of the bits of current string      int     sum     =     first  .  sum  ;      // retrieve respective secondHalf from map based on sum key      vector   <  string  >     secondHalf     =     mp  [  sum  ];      for  (  auto     second  :     secondHalf  )      {      // append first and second half and print      cout      < <     first  .  data     +     second      < <     ' '  ;      // after every 6 solution line is changed in output      // only for formatting below lines could be removed      i  ++  ;      if  (  i     %     6     ==     0  )      cout      < <     endl  ;      }      }   }   int     main  (){      char     up  [  2  ]     =     {  '0'       '1'  };      int     n     =     2  ;      string     x     =     ''  ;      perm  (  x       up       n       n  );      result  ();      return     0  ;   }   // This code is contributed by Nidhi goel.    
Java
   import     java.util.*  ;   class   GFG     {      static     class   FirstHalf     {      String     data  ;      int     sum  ;      FirstHalf  (  String     data       int     sum  )     {      this  .  data     =     data  ;      this  .  sum     =     sum  ;      }      }      //MAP: Key -> sum of bits; Value -> All possible permutation with respective sum      static     Map   <  Integer       ArrayList   <  String  >>     map     =     new     HashMap   <>  ();      //first N-half bits      static     List   <  FirstHalf  >     firstHalf     =     new     ArrayList   <>  ();      //function to find sum of the bits from a String      public     static     int     sumOfString  (  String     s  )     {      int     sum     =     0  ;      //ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1)      for  (  char     c  :     s  .  toCharArray  ())     {      sum     +=     c     -     '0'  ;      }      return     sum  ;      }      public     static     void     perm  (  String     p       char  []     bin       int     level       int     n  )     {      //p: processed string(processed permutation at current level)      //bin: {'0' '1'}      //l: current level of recursion tree (leaf/solution level = 0)      //n: total levels      if  (  level     ==     0  )     {      //at solution level find sum of the current permutation      int     sum     =     sumOfString  (  p  );      //store current permutation to firstHalf list      firstHalf  .  add  (  new     FirstHalf  (  p       sum  ));      //put current permutation to its respective sum value      map  .  putIfAbsent  (  sum       new     ArrayList   <  String  >  ());      map  .  get  (  sum  ).  add  (  p  );      return  ;      }      //generate calls for permutation      //working: first solution with all 0s then replacing last 0 with 1 and so on...      for  (  char     c  :     bin  )     {      perm  (  p  +  c       bin       level  -  1       n  );      }      }      public     static     void     result  ()     {      int     i     =     0  ;      for  (  FirstHalf     first  :     firstHalf  )     {      //for each firstHalf string      //find sum of the bits of current string      int     sum     =     first  .  sum  ;      //retrieve respective secondHalf from map based on sum key      ArrayList   <  String  >     secondHalf     =     map  .  get  (  sum  );      for  (  String     second  :     secondHalf  )     {      //append first and second half and print      System  .  out  .  print  (  first  .  data  +  second  +  ' '  );      //after every 6 solution line is changed in output      //only for formatting below lines could be removed      i  ++  ;      if  (  i     %     6     ==     0  )      System  .  out  .  println  ();      }      }      }      public     static     void     main  (  String  []     args  )     {      char  []     up     =     {  '0'       '1'  };      int     n     =     2  ;      perm  (  ''       up       n       n  );      result  ();      }   }   //Code contributed by Animesh Singh   
Python3
   # Python code implementation   class   FirstHalf  :   def   __init__  (  self     data     sum  ):   self  .  data   =   data   self  .  sum   =   sum   # MAP: Key -> sum of bits; Value -> All possible permutation with respective sum   map   =   {}   # first N-half bits   firstHalf   =   []   # function to find sum of the bits from a String   def   sumOfString  (  s  ):   sum   =   0   # ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1)   for   i   in   range  (  len  (  s  )):   sum   +=   ord  (  s  [  i  ])   -   ord  (  '0'  )   return   sum   def   perm  (  p     bin     level     n  ):   # p: processed string(processed permutation at current level)   # bin: ['0' '1']   # l: current level of recursion tree (leaf/solution level = 0)   # n: total levels   if   level   ==   0  :   # at solution level find sum of the current permutation   sum   =   sumOfString  (  p  )   # store current permutation to firstHalf list   firstHalf  .  append  (  FirstHalf  (  p     sum  ))   # put current permutation to its respective sum value   if   sum   not   in   map  :   map  [  sum  ]   =   []   map  [  sum  ]  .  append  (  p  )   return   # generate calls for permutation   # working: first solution with all 0s then replacing last 0 with 1 and so on...   for   i   in   range  (  len  (  bin  )):   perm  (  p  +  bin  [  i  ]   bin     level  -  1     n  )   def   result  ():   i   =   0   for   j   in   range  (  len  (  firstHalf  )):   # for each firstHalf string   # find sum of the bits of current string   sum   =   firstHalf  [  j  ]  .  sum   # retrieve respective secondHalf from map based on sum key   secondHalf   =   map  [  sum  ]   for   k   in   range  (  len  (  secondHalf  )):   # append first and second half and print   print  (  firstHalf  [  j  ]  .  data   +   secondHalf  [  k  ]   +   ' '     end  =  ''  )   # after every 6 solution line is changed in output   # only for formatting below lines could be removed   i   =   i   +   1   if  (  i   %   6   ==   0  ):   print  (  '  n  '  )   up   =   [  '0'     '1'  ]   n   =   2   perm  (  ''     up     n     n  )   result  ()   # The code is contributed by Nidhi goel.   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     FirstHalf     {      public     string     data  ;      public     int     sum  ;      public     FirstHalf  (  string     data       int     sum  )     {      this  .  data     =     data  ;      this  .  sum     =     sum  ;      }   }   class     Gfg   {          // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum      static     Dictionary   <  int       List   <  string  >>     mp     =     new     Dictionary   <  int       List   <  string  >>  ();      // first N-half bits      static     List   <  FirstHalf  >     firstHalf     =     new     List   <  FirstHalf  >  ();      // function to find sum of the bits from a String      static     int     sumOfString  (  string     s  )     {      int     sum     =     0  ;      // ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1)      foreach     (  char     c     in     s  )     {      sum     +=     (  c     -     '0'  );      }      return     sum  ;      }      static     void     perm  (  string     p       char  []     bin       int     level       int     n  )     {      // p: processed string(processed permutation at current level)      // bin: {'0' '1'}      // l: current level of recursion tree (leaf/solution level = 0)      // n: total levels      if     (  level     ==     0  )     {      // at solution level find sum of the current permutation      int     sum     =     sumOfString  (  p  );      // store current permutation to firstHalf list      firstHalf  .  Add  (  new     FirstHalf  (  p       sum  ));      // put current permutation to its respective sum value      if     (  mp  .  ContainsKey  (  sum  ))     {      mp  [  sum  ].  Add  (  p  );      }     else     {      mp  .  Add  (  sum       new     List   <  string  >     {     p     });      }      return  ;      }      // generate calls for permutation      // working: first solution with all 0s       // then replacing last 0 with 1 and so on...      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      char     c     =     bin  [  i  ];      perm  (  p     +     c       bin       level     -     1       n  );      }      }      static     void     result  ()     {      int     i     =     0  ;      foreach     (  FirstHalf     first     in     firstHalf  )     {      // for each firstHalf string      // find sum of the bits of current string      int     sum     =     first  .  sum  ;      // retrieve respective secondHalf from map based on sum key      List   <  string  >     secondHalf     =     mp  [  sum  ];      foreach     (  string     second     in     secondHalf  )     {      // append first and second half and print      Console  .  Write  (  first  .  data     +     second     +     ' '  );      // after every 6 solution line is changed in output      // only for formatting below lines could be removed      i  ++  ;      if     (  i     %     6     ==     0  )      Console  .  WriteLine  ();      }      }      }      static     void     Main  (  string  []     args  )     {      char  []     up     =     {     '0'       '1'     };      int     n     =     2  ;      string     x     =     ''  ;      perm  (  x       up       n       n  );      result  ();      }   }   
JavaScript
   class     FirstHalf     {      constructor  (  data       sum  )     {      this  .  data     =     data  ;      this  .  sum     =     sum  ;      }   }   // MAP: Key -> sum of bits; Value -> All possible permutation with respective sum   const     map     =     new     Map  ();   // first N-half bits   const     firstHalf     =     [];   // function to find sum of the bits from a String   function     sumOfString  (  s  )     {      let     sum     =     0  ;      //ex: converts '1' to 1 -> (ASCII('1') - ASCII('0') = 1)      for  (  let     i     =     0  ;     i      <     s  .  length  ;     i  ++  )     {      sum     +=     s  .  charCodeAt  (  i  )     -     '0'  .  charCodeAt  (  0  );      }      return     sum  ;   }   function     perm  (  p       bin       level       n  )   {      // p: processed string(processed permutation at current level)      // bin: ['0' '1']      // l: current level of recursion tree (leaf/solution level = 0)      // n: total levels      if  (  level     ==     0  )      {          // at solution level find sum of the current permutation      let     sum     =     sumOfString  (  p  );          // store current permutation to firstHalf list      firstHalf  .  push  (  new     FirstHalf  (  p       sum  ));          // put current permutation to its respective sum value      if  (  !  map  .  has  (  sum  ))     map  .  set  (  sum       []);      map  .  get  (  sum  ).  push  (  p  );      return  ;      }          // generate calls for permutation      // working: first solution with all 0s then replacing last 0 with 1 and so on...      for  (  let     i     =     0  ;     i      <     bin  .  length  ;     i  ++  )     {      perm  (  p  +  bin  [  i  ]     bin       level  -  1       n  );      }   }   function     result  ()     {      let     i     =     0  ;      for  (  let     j     =     0  ;     j      <     firstHalf  .  length  ;     j  ++  )      {          // for each firstHalf string      // find sum of the bits of current string      let     sum     =     firstHalf  [  j  ].  sum  ;          // retrieve respective secondHalf from map based on sum key      let     secondHalf     =     map  .  get  (  sum  );      for  (  let     k     =     0  ;     k      <     secondHalf  .  length  ;     k  ++  )         {          // append first and second half and print      process  .  stdout  .  write  (  firstHalf  [  j  ].  data     +     secondHalf  [  k  ]     +     ' '  );          // after every 6 solution line is changed in output      // only for formatting below lines could be removed      i  ++  ;      if  (  i     %     6     ==     0  )      process  .  stdout  .  write  (  'n'  );      }      }   }   const     up     =     [  '0'       '1'  ];   const     n     =     2  ;   perm  (  ''       up       n       n  );   result  ();   

Saída
0000 0101 0110 1001 1010 1111  

Algoritmo:

1. Gere todas as permutações binárias de tamanho n

2. Calcule a soma dos bits de cada permutação e lembre-se disso para a segunda metade

[por exemplo: para n=2 lembre-se que existem duas strings com soma = 1, ou seja, '01' '10' ]

3. Itere todas as permutações geradas e para cada uma delas anexe a segunda metade de acordo com a soma dos bits

Análise de complexidade de tempo:

somaOfString() = O (N): percorre cada bit e adiciona-o à soma

permanente() = O(2 N *N)

2N * N: geramos todas as permutações de bits binários de tamanho N e encontramos a soma dos bits para cada permutação

resultado() = O((2 N ) * (N!/(N/2)!)2)

2 N : iteramos por todas as permutações possíveis de tamanho N (primeira metade)
NCN/2 = N!/(N/2)! 2 : (tamanho máximo da segunda metade): explicação abaixo:

vamos tomar N = 4 como exemplo.:

//Hash-Map parece

0 -> [0000] ................................(tamanho da lista: 4C0 = 1)
1 -> [0001 0010 0100 1000] ................................(tamanho da lista: 4C1 = 4)
2 -> [0011 0101 0110 1001 1010 1100] ................................(tamanho da lista: 4C2 = 6)
3 -> [0111 1011 1101 1110] ................................(tamanho da lista: 4C3 = 4)
4 -> [1111] ................................(tamanho da lista: 4C4 = 1)

Observamos aqui que cada lista tem um tamanho de N escolha Chave que será máximo em N escolha N/2

Como estamos iterando todos os 2 N permutações e anexação da segunda metade do mapa. O mapa possui a lista de tamanho máximo na posição N/2.

O pior caso ocorre na posição N/2 onde temos que percorrer NCN/2 = N!/(N/2)! 2 permutações.

Complexidade de tempo: O(2 N *N!/(N/2)! 2 )

Espaço auxiliar: O(2 N ) porque armazenamos todas as permutações de strings binárias de tamanho N