Sortowanie cykliczne

Sortowanie cykliczne
Wypróbuj w praktyce GfG Sortowanie cykliczne

Sortowanie cykliczne to niestabilny algorytm sortowania w miejscu, który jest szczególnie przydatny podczas sortowania tablic zawierających elementy o małym zakresie wartości. Został opracowany przez WD Jonesa i opublikowany w 1963 roku.

Podstawową ideą sortowania cyklicznego jest podzielenie tablicy wejściowej na cykle, z których każdy cykl składa się z elementów należących do tej samej pozycji w posortowanej tablicy wyjściowej. Następnie algorytm wykonuje serię zamian, aby umieścić każdy element we właściwej pozycji w swoim cyklu, aż do zakończenia wszystkich cykli i posortowania tablicy.

Oto szczegółowe wyjaśnienie algorytmu sortowania cyklicznego:

  1. Zacznij od nieposortowanej tablicy n elementów.
  2. Zainicjuj zmienną cyklStart na 0.
  3. Dla każdego elementu tablicy porównaj go z każdym innym elementem po jego prawej stronie. Jeśli są jakieś elementy mniejsze niż bieżący element, zwiększ cyklStart.
  4. Jeżeli cyklStart po porównaniu pierwszego elementu ze wszystkimi innymi elementami nadal wynosi 0, przejdź do następnego elementu i powtórz krok 3.
  5. Po znalezieniu mniejszego elementu zamień bieżący element na pierwszy element w swoim cyklu. Cykl jest następnie kontynuowany, aż bieżący element powróci do swojej pierwotnej pozycji.

Powtarzaj kroki 3-5, aż wszystkie cykle zostaną zakończone.

Tablica jest teraz posortowana.

Jedną z zalet sortowania cyklicznego jest to, że zajmuje mało pamięci, ponieważ sortuje tablicę w miejscu i nie wymaga dodatkowej pamięci na zmienne tymczasowe ani bufory. Jednak w niektórych sytuacjach może to działać powoli, szczególnie gdy tablica wejściowa ma duży zakres wartości. Niemniej jednak sortowanie cykliczne pozostaje użytecznym algorytmem sortowania w pewnych kontekstach, na przykład podczas sortowania małych tablic o ograniczonych zakresach wartości.

Sortowanie cykliczne to algorytm sortowania w miejscu niestabilny algorytm sortowania oraz sortowanie porównawcze, które jest teoretycznie optymalne pod względem całkowitej liczby zapisów do oryginalnej tablicy. 
 

  • Jest optymalny pod względem ilości zapisów do pamięci. To minimalizuje liczbę zapisów do pamięci sortować (każda wartość jest albo zapisywana zero razy, jeśli znajduje się już na właściwej pozycji, albo zapisywana jeden raz we właściwym miejscu).
  • Opiera się na założeniu, że sortowaną tablicę można podzielić na cykle. Cykle można przedstawić w formie wykresu. Mamy n węzłów i krawędź skierowaną od węzła i do węzła j, jeśli element o i-tym indeksie musi znajdować się pod j-tym indeksem w posortowanej tablicy. 
    Cykl w arr[] = {2 4 5 1 3} 
     
Sortowanie cykliczneCykl w arr[] = {2 4 5 1 3}
  • Cykl w arr[] = {4 3 2 1} 
     
Cykl w arr[] = {4 3 2 1} 


Po kolei rozważamy wszystkie cykle. Najpierw rozważymy cykl, który zawiera pierwszy element. Znajdujemy właściwą pozycję pierwszego elementu i umieszczamy go we właściwej pozycji, powiedzmy j. Rozważamy starą wartość arr[j] i znajdujemy jej właściwą pozycję. Robimy to tak długo, aż wszystkie elementy bieżącego cyklu znajdą się na właściwych pozycjach, czyli nie wrócimy do punktu początkowego cyklu.

Pseudokod:

 Begin   
for
start:= 0 to n - 2 do
key := array[start]
location := start
for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
if location = start then
ignore lower part go for next iteration
while key = array[location] do
location: = location + 1
done
if location != start then
swap array[location] with key
while location != start do
location start


for i:= start + 1 to n-1 do
if array[i] < key then
location: =location +1
done
while key= array[location]
location := location +1
if key != array[location]
Swap array[location] and key
done
done
End

Wyjaśnienie :  

  arr[] = {10 5 2 3}   
index = 0 1 2 3
cycle_start = 0
item = 10 = arr[0]

Find position where we put the item
pos = cycle_start
i=pos+1
while(i
if (arr[i] < item)
pos++;

We put 10 at arr[3] and change item to
old value of arr[3].
arr[] = {10 5 2 10 }
item = 3

Again rotate rest cycle that start with index '0'
Find position where we put the item = 3
we swap item with element at arr[1] now
arr[] = {10 3 2 10 }
item = 5

Again rotate rest cycle that start with index '0' and item = 5
we swap item with element at arr[2].
arr[] = {10 3 5 10 }
item = 2

Again rotate rest cycle that start with index '0' and item = 2
arr[] = { 2 3 5 10 }

Above is one iteration for cycle_stat = 0.
Repeat above steps for cycle_start = 1 2 ..n-2

Poniżej implementacja powyższego podejścia:

CPP
   // C++ program to implement cycle sort   #include          using     namespace     std  ;   // Function sort the array using Cycle sort   void     cycleSort  (  int     arr  []     int     n  )   {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      swap  (  item       arr  [  pos  ]);      writes  ++  ;      }      }      }      // Number of memory writes or swaps      // cout  < < writes  < < endl ;   }   // Driver program to test above function   int     main  ()   {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cycleSort  (  arr       n  );      cout      < <     'After sort : '      < <     endl  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      return     0  ;   }   
Java
   // Java program to implement cycle sort   import     java.util.*  ;   import     java.lang.*  ;   class   GFG     {      // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int     arr  []       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and put it to on      // the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )     {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ]  ;      // Find position where we put the item. We basically      // count all smaller elements on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ]  )      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ]  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ]  ;      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  length  ;      cycleSort  (  arr       n  );      System  .  out  .  println  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      System  .  out  .  print  (  arr  [  i  ]     +     ' '  );      }   }   // Code Contributed by Mohit Gupta_OMG  <(0_o)>   
Python3
   # Python program to implement cycle sort   def   cycleSort  (  array  ):   writes   =   0   # Loop through the array to find cycles to rotate.   for   cycleStart   in   range  (  0     len  (  array  )   -   1  ):   item   =   array  [  cycleStart  ]   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # If the item is already there this is not a cycle.   if   pos   ==   cycleStart  :   continue   # Otherwise put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   # Rotate the rest of the cycle.   while   pos   !=   cycleStart  :   # Find where to put the item.   pos   =   cycleStart   for   i   in   range  (  cycleStart   +   1     len  (  array  )):   if   array  [  i  ]    <   item  :   pos   +=   1   # Put the item there or right after any duplicates.   while   item   ==   array  [  pos  ]:   pos   +=   1   array  [  pos  ]   item   =   item     array  [  pos  ]   writes   +=   1   return   writes   # driver code    arr   =   [  1     8     3     9     10     10     2     4   ]   n   =   len  (  arr  )   cycleSort  (  arr  )   print  (  'After sort : '  )   for   i   in   range  (  0     n  )   :   print  (  arr  [  i  ]   end   =   ' '  )   # Code Contributed by Mohit Gupta_OMG  <(0_o)>   
C#
   // C# program to implement cycle sort   using     System  ;   class     GFG     {          // Function sort the array using Cycle sort      public     static     void     cycleSort  (  int  []     arr       int     n  )      {      // count number of memory writes      int     writes     =     0  ;      // traverse array elements and       // put it to on the right place      for     (  int     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {      // initialize item as starting point      int     item     =     arr  [  cycle_start  ];      // Find position where we put the item.       // We basically count all smaller elements       // on right side of item.      int     pos     =     cycle_start  ;      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;      // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  pos     !=     cycle_start  )     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )     {      pos     =     cycle_start  ;      // Find position where we put the element      for     (  int     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;      // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;      // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      int     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }      // Driver program to test above function      public     static     void     Main  ()      {      int  []     arr     =     {     1       8       3       9       10       10       2       4     };      int     n     =     arr  .  Length  ;          // Function calling      cycleSort  (  arr       n  );      Console  .  WriteLine  (  'After sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      }   }   // This code is contributed by Nitin Mittal   
JavaScript
    <  script  >   // Javascript program to implement cycle sort      // Function sort the array using Cycle sort      function     cycleSort  (  arr       n  )      {          // count number of memory writes      let     writes     =     0  ;          // traverse array elements and put it to on      // the right place      for     (  let     cycle_start     =     0  ;     cycle_start      <=     n     -     2  ;     cycle_start  ++  )      {          // initialize item as starting point      let     item     =     arr  [  cycle_start  ];          // Find position where we put the item. We basically      // count all smaller elements on right side of item.      let     pos     =     cycle_start  ;      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos  ++  ;          // If item is already in correct position      if     (  pos     ==     cycle_start  )      continue  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  pos     !=     cycle_start  )      {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }          // Rotate rest of the cycle      while     (  pos     !=     cycle_start  )      {      pos     =     cycle_start  ;          // Find position where we put the element      for     (  let     i     =     cycle_start     +     1  ;     i      <     n  ;     i  ++  )      if     (  arr  [  i  ]      <     item  )      pos     +=     1  ;          // ignore all duplicate elements      while     (  item     ==     arr  [  pos  ])      pos     +=     1  ;          // put the item to it's right position      if     (  item     !=     arr  [  pos  ])     {      let     temp     =     item  ;      item     =     arr  [  pos  ];      arr  [  pos  ]     =     temp  ;      writes  ++  ;      }      }      }      }       // Driver code       let     arr     =     [     1       8       3       9       10       10       2       4     ];      let     n     =     arr  .  length  ;      cycleSort  (  arr       n  );          document  .  write  (  'After sort : '     +     '  
'
); for ( let i = 0 ; i < n ; i ++ ) document . write ( arr [ i ] + ' ' ); // This code is contributed by susmitakundugoaldanga. < /script>

Wyjście
After sort : 1 2 3 4 8 9 10 10  

Analiza złożoności czasu

  • Najgorszy przypadek: NA 2
  • Przeciętny przypadek: NA 2
  • Najlepszy przypadek: NA 2 )

Przestrzeń pomocnicza: O(1)

  • Złożoność przestrzeni jest stała, ponieważ ten algorytm istnieje, więc nie wymaga dodatkowej pamięci do sortowania.

Metoda 2: Ta metoda ma zastosowanie tylko wtedy, gdy podane wartości tablicy lub elementy mieszczą się w zakresie od 1 do N lub 0 do N. W tej metodzie nie musimy obracać tablicy

Zbliżać się : Wszystkie podane wartości tablicy powinny mieścić się w zakresie od 1 do N lub od 0 do N. Jeśli zakres wynosi od 1 do N, wówczas poprawną pozycją każdego elementu tablicy będzie indeks == wartość-1, co oznacza, że ​​przy 0. wartości indeksu będzie 1, podobnie przy 1. pozycji indeksu wartość będzie wynosić 2 i tak dalej, aż do n-tej wartości.

podobnie dla wartości od 0 do N poprawna pozycja indeksu każdego elementu tablicy lub wartości będzie taka sama jak jego wartość, tj. przy 0-tym indeksie będzie 0, 1-sza pozycja będzie tam.

Wyjaśnienie : 

 arr[] = {5 3 1 4 2}   
index = 0 1 2 3 4

i = 0;
while( i < arr.length)
correctposition = arr[i]-1;

find ith item correct position
for the first time i = 0 arr[0] = 5 correct index of 5 is 4 so arr[i] - 1 = 5-1 = 4


if( arr[i] <= arr.length && arr[i] != arr[correctposition])


arr[i] = 5 and arr[correctposition] = 4
so 5 <= 5 && 5 != 4 if condition true
now swap the 5 with 4


int temp = arr[i];
arr[i] = arr[correctposition];
arr[correctposition] = temp;

now resultant arr at this after 1st swap
arr[] = {2 3 1 4 5} now 5 is shifted at its correct position

now loop will run again check for i = 0 now arr[i] is = 2
after swapping 2 at its correct position
arr[] = {3 2 1 4 5}

now loop will run again check for i = 0 now arr[i] is = 3
after swapping 3 at its correct position
arr[] = {1 2 3 4 5}

now loop will run again check for i = 0 now arr[i] is = 1
this time 1 is at its correct position so else block will execute and i will increment i = 1;
once i exceeds the size of array will get array sorted.
arr[] = {1 2 3 4 5}


else

i++;
loop end;

once while loop end we get sorted array just print it
for( index = 0 ; index < arr.length; index++)
print(arr[index] + ' ')
sorted arr[] = {1 2 3 4 5}

Poniżej implementacja powyższego podejścia:

C++
   #include          using     namespace     std  ;   void     cyclicSort  (  int     arr  []     int     n  ){      int     i     =     0  ;         while  (  i      <     n  )      {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correct     =     arr  [  i  ]     -     1     ;      if  (  arr  [  i  ]     !=     arr  [  correct  ]){      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr  [  i  ]     arr  [  correct  ])     ;      }  else  {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++     ;      }      }   }   void     printArray  (  int     arr  []     int     size  )   {      int     i  ;      for     (  i     =     0  ;     i      <     size  ;     i  ++  )      cout      < <     arr  [  i  ]      < <     ' '  ;      cout      < <     endl  ;   }   int     main  ()     {      int     arr  []     =     {     3       2       4       5       1  };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Before sorting array:   n  '  ;      printArray  (  arr       n  );      cyclicSort  (  arr       n  );      cout      < <     'Sorted array:   n  '  ;      printArray  (  arr       n  );      return     0  ;   }   
Java
   // java program to check implement cycle sort   import     java.util.*  ;   public     class   MissingNumber     {      public     static     void     main  (  String  []     args  )      {      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Before sort :'  );      System  .  out  .  println  (  Arrays  .  toString  (  arr  ));      CycleSort  (  arr       n  );          }      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ]  )     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      System  .  out  .  println  (  'After sort : '  );      System  .  out  .  print  (  Arrays  .  toString  (  arr  ));              }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ]  ;      arr  [  i  ]     =     arr  [  correctpos  ]  ;      arr  [  correctpos  ]     =     temp  ;      }   }   // this code is contributed by devendra solunke   
Python
   # Python program to check implement cycle sort   def   cyclicSort  (  arr     n  ):   i   =   0   while   i    <   n  :   # as array is of 1 based indexing so the   # correct position or index number of each   # element is element-1 i.e. 1 will be at 0th   # index similarly 2 correct index will 1 so   # on...   correct   =   arr  [  i  ]   -   1   if   arr  [  i  ]   !=   arr  [  correct  ]:   # if array element should be lesser than   # size and array element should not be at   # its correct position then only swap with   # its correct position or index value   arr  [  i  ]   arr  [  correct  ]   =   arr  [  correct  ]   arr  [  i  ]   else  :   # if element is at its correct position   # just increment i and check for remaining   # array elements   i   +=   1   def   printArray  (  arr  ):   print  (  *  arr  )   arr   =   [  3     2     4     5     1  ]   n   =   len  (  arr  )   print  (  'Before sorting array:'  )   printArray  (  arr  )   # Function Call   cyclicSort  (  arr     n  )   print  (  'Sorted array:'  )   printArray  (  arr  )   # This Code is Contributed by Prasad Kandekar(prasad264)   
C#
   using     System  ;   public     class     GFG     {      static     void     CycleSort  (  int  []     arr       int     n  )      {      int     i     =     0  ;      while     (  i      <     n  )     {      // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      int     correctpos     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]      <     n     &&     arr  [  i  ]     !=     arr  [  correctpos  ])     {      // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      swap  (  arr       i       correctpos  );      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }      Console  .  Write  (  'nAfter sort : '  );      for     (  int     index     =     0  ;     index      <     n  ;     index  ++  )      Console  .  Write  (  arr  [  index  ]     +     ' '  );      }      static     void     swap  (  int  []     arr       int     i       int     correctpos  )      {      // swap elements with their correct indexes      int     temp     =     arr  [  i  ];      arr  [  i  ]     =     arr  [  correctpos  ];      arr  [  correctpos  ]     =     temp  ;      }      static     public     void     Main  ()      {      // Code      int  []     arr     =     {     3       2       4       5       1     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Before sort : '  );      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      Console  .  Write  (  arr  [  i  ]     +     ' '  );      CycleSort  (  arr       n  );      }   }   // This code is contributed by devendra solunke   
JavaScript
   // JavaScript code for the above code   function     cyclicSort  (  arr       n  )     {      var     i     =     0  ;      while     (  i      <     n  )      {          // as array is of 1 based indexing so the      // correct position or index number of each      // element is element-1 i.e. 1 will be at 0th      // index similarly 2 correct index will 1 so      // on...      let     correct     =     arr  [  i  ]     -     1  ;      if     (  arr  [  i  ]     !==     arr  [  correct  ])      {          // if array element should be lesser than      // size and array element should not be at      // its correct position then only swap with      // its correct position or index value      [  arr  [  i  ]     arr  [  correct  ]]     =     [  arr  [  correct  ]     arr  [  i  ]];      }      else     {      // if element is at its correct position      // just increment i and check for remaining      // array elements      i  ++  ;      }      }   }   function     printArray  (  arr       size  )     {      for     (  var     i     =     0  ;     i      <     size  ;     i  ++  )     {      console  .  log  (  arr  [  i  ]     +     ' '  );      }      console  .  log  (  'n'  );   }   var     arr     =     [  3       2       4       5       1  ];   var     n     =     arr  .  length  ;   console  .  log  (  'Before sorting array: n'  );   printArray  (  arr       n  );   cyclicSort  (  arr       n  );   console  .  log  (  'Sorted array: n'  );   printArray  (  arr       n  );   // This Code is Contributed by Prasad Kandekar(prasad264)   

Wyjście
Before sorting array: 3 2 4 5 1 Sorted array: 1 2 3 4 5  

Analiza złożoności czasu:

  • Najgorszy przypadek: NA) 
  • Przeciętny przypadek: NA) 
  • Najlepszy przypadek: NA)

Przestrzeń pomocnicza: O(1)

Zaleta sortowania cyklicznego:

  1. Nie jest wymagane żadne dodatkowe miejsce do przechowywania.
  2.  algorytm sortowania w miejscu.
  3.  Minimalna liczba zapisów do pamięci
  4.  Sortowanie cykliczne jest przydatne, gdy tablica jest przechowywana w pamięci EEPROM lub FLASH. 

Wady sortowania cyklicznego:

  1.  Nie jest najczęściej używany.
  2.  Ma większą złożoność czasową o(n^2)
  3.  Niestabilny algorytm sortowania.

Zastosowanie sortowania cyklicznego:

  • Ten algorytm sortowania najlepiej sprawdza się w sytuacjach, gdy operacje zapisu lub zamiany pamięci są kosztowne.
  • Przydatne w przypadku złożonych problemów. 
     
Utwórz quiz