Optimal plassering av punktet for å minimere total avstand

Optimal plassering av punktet for å minimere total avstand
Prøv det på GfG Practice Optimal plassering av punktet for å minimere total avstand #practiceLinkDiv { display: ingen !viktig; }

Gitt et sett med punkter som og en linje som ax+by+c = 0. Vi må finne et punkt på gitt linje der summen av avstander fra gitte punkter er minimum. 

Eksempel:  



In above figure optimum location of point of x - y - 3 = 0 line is (2 -1) whose total distance with other points is 20.77 which is minimum obtainable total distance. 
Recommended Practice Optimal plassering av punktet for å minimere total avstand Prøv det!

Hvis vi tar ett punkt på en gitt linje på uendelig avstand, vil den totale avstandskostnaden være uendelig nå når vi flytter dette punktet på linjen mot gitte punkter, begynner den totale avstandskostnaden å synke og etter en tid begynner den igjen å øke som nådde uendelig på den andre uendelige enden av linjen, så avstandskostnadskurven ser ut som en U-kurve og vi må finne bunnverdien til denne U-kurven. 

Siden U-kurven ikke er monotont økende eller avtagende kan vi ikke bruke binært søk for å finne det nederste punktet her vil vi bruke ternært søk for å finne det nederste meste punktet ternært søk hopper over en tredjedel av søkerommet ved hver iterasjon. Du kan lese mer om ternært søk her

Så løsningen fortsetter som følger, vi starter med lav og høy initialisert som henholdsvis noen minste og største verdier, så starter vi iterasjon i hver iterasjon vi beregner to mids mid1 og mid2 som representerer 1/3rd og 2/3rd plassering i søkeområdet vi beregner total avstand for alle punkter med mid1 og mid2 og oppdaterer lav eller høy ved å sammenligne disse avstandene fortsett tilnærmet lik denne lave iterasjonen. 

C++
   // C/C++ program to find optimum location and total cost   #include          using     namespace     std  ;   #define sq(x) ((x) * (x))   #define EPS 1e-6   #define N 5   // structure defining a point   struct     point     {      int     x       y  ;      point  ()     {}      point  (  int     x       int     y  )      :     x  (  x  )           y  (  y  )      {      }   };   // structure defining a line of ax + by + c = 0 form   struct     line     {      int     a       b       c  ;      line  (  int     a       int     b       int     c  )      :     a  (  a  )           b  (  b  )           c  (  c  )      {      }   };   // method to get distance of point (x y) from point p   double     dist  (  double     x       double     y       point     p  )   {      return     sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   double     compute  (  point     p  []     int     n       line     l       double     X  )   {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;   }   // Utility method to find minimum total distance   double     findOptimumCostUtil  (  point     p  []     int     n       line     l  )   {      double     low     =     -1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x co-ordiantes      // of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      //      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   double     findOptimumCost  (  int     points  [  N  ][  2  ]     line     l  )   {      point     p  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);      return     findOptimumCostUtil  (  p       N       l  );   }   // Driver code to test above method   int     main  ()   {      line     l  (  1       -1       -3  );      int     points  [  N  ][  2  ]     =     {      {     -3       -2     }     {     -1       0     }     {     -1       2     }     {     1       2     }     {     3       4     }      };      cout      < <     findOptimumCost  (  points       l  )      < <     endl  ;      return     0  ;   }   
Java
   // A Java program to find optimum location   // and total cost   class   GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      static     class   point     {      int     x       y  ;      point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line of ax + by + c = 0 form      static     class   line     {      int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */      static     double     compute  (  point     p  []       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]  );      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point     p  []       int     n        line     l  )      {      double     low     =     -  1e6  ;      double     high     =     1e6  ;      // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int     points  [][]       line     l  )      {      point  []     p     =     new     point  [  N  ]  ;      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]       points  [  i  ][  1  ]  );      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int     points  [][]     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      System  .  out  .  println  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by Rajput-Ji   
Python3
   # A Python3 program to find optimum location   # and total cost   import   math   class   Optimum_distance  :   # Class defining a point   class   Point  :   def   __init__  (  self     x     y  ):   self  .  x   =   x   self  .  y   =   y   # Class defining a line of ax + by + c = 0 form   class   Line  :   def   __init__  (  self     a     b     c  ):   self  .  a   =   a   self  .  b   =   b   self  .  c   =   c   # Method to get distance of point    # (x y) from point p   def   dist  (  self     x     y     p  ):   return   math  .  sqrt  ((  x   -   p  .  x  )   **   2   +   (  y   -   p  .  y  )   **   2  )   # Utility method to compute total distance   # all points when choose point on given   # line has x-coordinate value as X   def   compute  (  self     p     n     l     x  ):   res   =   0   y   =   -  1   *   (  l  .  a  *  x   +   l  .  c  )   /   l  .  b   # Calculating Y of chosen point   # by line equation   for   i   in   range  (  n  ):   res   +=   self  .  dist  (  x     y     p  [  i  ])   return   res   # Utility method to find minimum total distance   def   find_Optimum_cost_untill  (  self     p     n     l  ):   low   =   -  1e6   high   =   1e6   eps   =   1e-6   +   1   # Loop until difference between low   # and high become less than EPS   while  ((  high   -   low  )   >   eps  ):   # mid1 and mid2 are representative x   # co-ordiantes of search space   mid1   =   low   +   (  high   -   low  )   /   3   mid2   =   high   -   (  high   -   low  )   /   3   dist1   =   self  .  compute  (  p     n     l     mid1  )   dist2   =   self  .  compute  (  p     n     l     mid2  )   # If mid2 point gives more total    # distance skip third part   if   (  dist1    <   dist2  ):   high   =   mid2   # If mid1 point gives more total   # distance skip first part   else  :   low   =   mid1   # Compute optimum distance cost by    # sending average of low and high as X   return   self  .  compute  (  p     n     l     (  low   +   high  )   /   2  )   # Method to find optimum cost   def   find_Optimum_cost  (  self     p     l  ):   n   =   len  (  p  )   p_arr   =   [  None  ]   *   n   # Converting 2D array input to point array   for   i   in   range  (  n  ):   p_obj   =   self  .  Point  (  p  [  i  ][  0  ]   p  [  i  ][  1  ])   p_arr  [  i  ]   =   p_obj   return   self  .  find_Optimum_cost_untill  (  p_arr     n     l  )   # Driver Code   if   __name__   ==   '__main__'  :   obj   =   Optimum_distance  ()   l   =   obj  .  Line  (  1     -  1     -  3  )   p   =   [   [   -  3     -  2   ]   [   -  1     0   ]   [   -  1     2   ]   [   1     2   ]   [   3     4   ]   ]   print  (  obj  .  find_Optimum_cost  (  p     l  ))   # This code is contributed by Sulu_mufi   
C#
   // C# program to find optimum location   // and total cost   using     System  ;   class     GFG     {      static     double     sq  (  double     x  )     {     return     ((  x  )     *     (  x  ));     }      static     int     EPS     =     (  int  )(  1e-6  )     +     1  ;      static     int     N     =     5  ;      // structure defining a point      public     class     point     {      public     int     x       y  ;      public     point  ()     {}      public     point  (  int     x       int     y  )      {      this  .  x     =     x  ;      this  .  y     =     y  ;      }      };      // structure defining a line      // of ax + by + c = 0 form      public     class     line     {      public     int     a       b       c  ;      public     line  (  int     a       int     b       int     c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }      };      // method to get distance of      // point (x y) from point p      static     double     dist  (  double     x       double     y       point     p  )      {      return     Math  .  Sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));      }      /* Utility method to compute total distance    of all points when choose point on    given line has x-coordinate value as X */      static     double     compute  (  point  []     p       int     n       line     l        double     X  )      {      double     res     =     0  ;      // calculating Y of chosen point      // by line equation      double     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);      return     res  ;      }      // Utility method to find minimum total distance      static     double     findOptimumCostUtil  (  point  []     p       int     n        line     l  )      {      double     low     =     -  1  e6  ;      double     high     =     1  e6  ;      // loop until difference between      // low and high become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative      // x co-ordiantes of search space      double     mid1     =     low     +     (  high     -     low  )     /     3  ;      double     mid2     =     high     -     (  high     -     low  )     /     3  ;      double     dist1     =     compute  (  p       n       l       mid1  );      double     dist2     =     compute  (  p       n       l       mid2  );      // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;      // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }      // compute optimum distance cost by      // sending average of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );      }      // method to find optimum cost      static     double     findOptimumCost  (  int  [     ]     points       line     l  )      {      point  []     p     =     new     point  [  N  ];      // converting 2D array input to point array      for     (  int     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i       0  ]     points  [  i       1  ]);      return     findOptimumCostUtil  (  p       N       l  );      }      // Driver Code      public     static     void     Main  (  String  []     args  )      {      line     l     =     new     line  (  1       -  1       -  3  );      int  [     ]     points     =     {     {     -  3       -  2     }      {     -  1       0     }      {     -  1       2     }      {     1       2     }      {     3       4     }     };      Console  .  WriteLine  (  findOptimumCost  (  points       l  ));      }   }   // This code is contributed by 29AjayKumar   
JavaScript
    <  script  >   // A JavaScript program to find optimum location   // and total cost   function     sq  (  x  )   {      return     x  *  x  ;   }   let     EPS     =     (  1e-6  )     +     1  ;   let     N     =     5  ;   // structure defining a point   class     point   {      constructor  (  x    y  )      {      this  .  x  =  x  ;      this  .  y  =  y  ;      }   }   // structure defining a line of ax + by + c = 0 form   class     line   {      constructor  (  a    b    c  )      {      this  .  a     =     a  ;      this  .  b     =     b  ;      this  .  c     =     c  ;      }       }   // method to get distance of point (x y) from point p   function     dist  (  x    y    p  )   {      return     Math  .  sqrt  (  sq  (  x     -     p  .  x  )     +     sq  (  y     -     p  .  y  ));   }   /* Utility method to compute total distance all points    when choose point on given line has x-coordinate    value as X */   function     compute  (  p    n    l    X  )   {      let     res     =     0  ;          // calculating Y of chosen point by line equation      let     Y     =     -  1     *     (  l  .  c     +     l  .  a     *     X  )     /     l  .  b  ;      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      res     +=     dist  (  X       Y       p  [  i  ]);          return     res  ;   }   // Utility method to find minimum total distance   function     findOptimumCostUtil  (  p    n    l  )   {      let     low     =     -  1e6  ;      let     high     =     1e6  ;          // loop until difference between low and high      // become less than EPS      while     ((  high     -     low  )     >     EPS  )     {      // mid1 and mid2 are representative x      // co-ordiantes of search space      let     mid1     =     low     +     (  high     -     low  )     /     3  ;      let     mid2     =     high     -     (  high     -     low  )     /     3  ;          let     dist1     =     compute  (  p       n       l       mid1  );      let     dist2     =     compute  (  p       n       l       mid2  );          // if mid2 point gives more total distance      // skip third part      if     (  dist1      <     dist2  )      high     =     mid2  ;          // if mid1 point gives more total distance      // skip first part      else      low     =     mid1  ;      }          // compute optimum distance cost by sending average      // of low and high as X      return     compute  (  p       n       l       (  low     +     high  )     /     2  );   }   // method to find optimum cost   function     findOptimumCost  (  points    l  )   {      let     p     =     new     Array  (  N  );          // converting 2D array input to point array      for     (  let     i     =     0  ;     i      <     N  ;     i  ++  )      p  [  i  ]     =     new     point  (  points  [  i  ][  0  ]     points  [  i  ][  1  ]);          return     findOptimumCostUtil  (  p       N       l  );   }   // Driver Code   let     l     =     new     line  (  1       -  1       -  3  );   let     points  =     [[     -  3       -  2     ]      [     -  1       0     ]      [     -  1       2     ]      [     1       2     ]      [     3       4     ]];   document  .  write  (  findOptimumCost  (  points       l  ));   // This code is contributed by rag2127    <  /script>   

Produksjon
20.7652 

Tidskompleksitet: 2
Hjelpeplass: På)


 

Lag quiz

Topp Artikler

Kategori

Interessante Artikler