Tell måter å stave et tall på med gjentatte sifre

Tell måter å stave et tall på med gjentatte sifre
Prøv det på GfG Practice #practiceLinkDiv { display: ingen !viktig; }

Gitt en streng som inneholder sifre i et tall. Nummeret kan inneholde mange samme kontinuerlige sifre i det. Oppgaven er å telle antall måter å stave tallet på. 
Tenk for eksempel på 8884441100 man kan stave det ganske enkelt som trippel åtte trippel fire dobbel to og dobbel null. Man kan også stave som dobbel åtte åtte fire dobbel fire to to dobbel null. 

Eksempler:   

Input : num = 100 Output : 2 The number 100 has only 2 possibilities 1) one zero zero 2) one double zero. Input : num = 11112 Output: 8 1 1 1 1 2 11 1 1 2 1 1 11 2 1 11 1 2 11 11 2 1 111 2 111 1 2 1111 2 Input : num = 8884441100 Output: 64 Input : num = 12345 Output: 1 Input : num = 11111 Output: 16 
Recommended Practice Stave et tall Prøv det!

Dette er et enkelt problem med permutasjon og kombinasjon. Hvis vi tar eksempel på testtilfelle gitt i spørsmålet 11112. Svaret avhenger av antall mulige delstrenger av 1111. Antall mulige delstrenger av '1111' er 2^3 = 8 fordi det er antall kombinasjoner av 4 - 1 =  3 skilletegn '|' mellom to tegn i strengen (tallsiffer representert av strengen): '1|1|1|1'. Siden kombinasjonene våre vil avhenge av om vi velger en bestemt 1 og for '2' vil det bare være én mulighet 2^0 = 1, så svaret for '11112' vil være 8*1 = 8. 

Så tilnærmingen er å telle det spesielle kontinuerlige sifferet i streng og multiplisere 2^(count-1) med forrige resultat. 

C++
   // C++ program to count number of ways we   // can spell a number   #include       using     namespace     std  ;   typedef     long     long     int     ll  ;   // Function to calculate all possible spells of   // a number with repeated digits   // num --> string which is favourite number   ll     spellsCount  (  string     num  )   {      int     n     =     num  .  length  ();      // final count of total possible spells      ll     result     =     1  ;      // iterate through complete number      for     (  int     i  =  0  ;     i   <  n  ;     i  ++  )      {      // count contiguous frequency of particular      // digit num[i]      int     count     =     1  ;      while     (  i      <     n  -1     &&     num  [  i  +  1  ]     ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply with result       result     =     result     *     pow  (  2       count  -1  );      }      return     result  ;   }   // Driver program to run the case   int     main  ()   {      string     num     =     '11112'  ;      cout      < <     spellsCount  (  num  );      return     0  ;   }   
Java
   // Java program to count number of ways we   // can spell a number   import     java.io.*  ;   class   GFG     {          // Function to calculate all possible       // spells of a number with repeated digits      // num --> string which is favourite number      static     long     spellsCount  (  String     num  )      {          int     n     =     num  .  length  ();      // final count of total possible spells      long     result     =     1  ;      // iterate through complete number      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // count contiguous frequency of       // particular digit num[i]      int     count     =     1  ;          while     (  i      <     n     -     1     &&     num  .  charAt  (  i     +     1  )         ==     num  .  charAt  (  i  ))     {          count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         (  long  )  Math  .  pow  (  2       count     -     1  );      }      return     result  ;      }      public     static     void     main  (  String  []     args  )      {      String     num     =     '11112'  ;      System  .  out  .  print  (  spellsCount  (  num  ));      }   }   // This code is contributed by Anant Agarwal.   
Python3
   # Python3 program to count number of   # ways we can spell a number   # Function to calculate all possible    # spells of a number with repeated    # digits num --> string which is    # favourite number   def   spellsCount  (  num  ):   n   =   len  (  num  );   # final count of total   # possible spells   result   =   1  ;   # iterate through complete   # number   i   =   0  ;   while  (  i   <  n  ):   # count contiguous frequency    # of particular digit num[i]   count   =   1  ;   while   (  i    <   n   -   1   and   num  [  i   +   1  ]   ==   num  [  i  ]):   count   +=   1  ;   i   +=   1  ;   # Compute 2^(count-1) and   # multiply with result    result   =   result   *   int  (  pow  (  2     count   -   1  ));   i   +=   1  ;   return   result  ;   # Driver Code   num   =   '11112'  ;   print  (  spellsCount  (  num  ));   # This code is contributed   # by mits   
C#
   // C# program to count number of ways we   // can spell a number   using     System  ;   class     GFG     {          // Function to calculate all possible       // spells of a number with repeated       // digits num --> string which is      // favourite number      static     long     spellsCount  (  String     num  )      {          int     n     =     num  .  Length  ;      // final count of total possible      // spells      long     result     =     1  ;      // iterate through complete number      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )      {          // count contiguous frequency of       // particular digit num[i]      int     count     =     1  ;          while     (  i      <     n     -     1     &&     num  [  i     +     1  ]         ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         (  long  )  Math  .  Pow  (  2       count     -     1  );      }          return     result  ;      }      // Driver code      public     static     void     Main  ()      {      String     num     =     '11112'  ;      Console  .  Write  (  spellsCount  (  num  ));      }   }   // This code is contributed by nitin mittal.   
PHP
      // PHP program to count    // number of ways we   // can spell a number   // Function to calculate    // all possible spells of   // a number with repeated    // digits num --> string   // which is favourite number   function   spellsCount  (  $num  )   {   $n   =   strlen  (  $num  );   // final count of total   // possible spells   $result   =   1  ;   // iterate through    // complete number   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // count contiguous frequency    // of particular digit num[i]   $count   =   1  ;   while   (  $i    <   $n   -   1   &&   $num  [  $i   +   1  ]   ==   $num  [  $i  ])   {   $count  ++  ;   $i  ++  ;   }   // Compute 2^(count-1) and   // multiply with result    $result   =   $result   *   pow  (  2     $count   -   1  );   }   return   $result  ;   }   // Driver Code   $num   =   '11112'  ;   echo   spellsCount  (  $num  );   // This code is contributed   // by nitin mittal.    ?>   
JavaScript
    <  script  >   // Javascript program to count number of    // ways we can spell a number   // Function to calculate all possible    // spells of a number with repeated    // digits num --> string which is   // favourite number   function     spellsCount  (  num  )   {      let     n     =     num  .  length  ;      // Final count of total possible      // spells      let     result     =     1  ;      // Iterate through complete number      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )      {          // Count contiguous frequency of       // particular digit num[i]      let     count     =     1  ;          while     (  i      <     n     -     1     &&         num  [  i     +     1  ]     ==     num  [  i  ])      {      count  ++  ;      i  ++  ;      }      // Compute 2^(count-1) and multiply       // with result      result     =     result     *         Math  .  pow  (  2       count     -     1  );      }      return     result  ;   }       // Driver code   let     num     =     '11112'  ;   document  .  write  (  spellsCount  (  num  ));   // This code is contributed by code_hunt        <  /script>   

Produksjon
8 

Tidskompleksitet: O(n*log(n))
Hjelpeplass: O(1)

Hvis du har en annen tilnærming til å løse dette problemet, vennligst del.
 

Lag quiz