Programma om twee breuken op te tellen

Programma om twee breuken op te tellen
Probeer het eens op GfG Practice

Gegeven twee integer-arrays A[] En B[] met twee gehele getallen die elk respectievelijk de teller en de noemer van een breuk vertegenwoordigen. De taak is om de som van de twee breuken te vinden en de teller en de noemer van het resultaat terug te geven.

Voorbeelden:  

Invoer : een = [1 2] b = [3 2]
Uitvoer : [2 1]
Uitleg: 1/2 + 3/2 = 2/1



Invoer : een = [1 3] b = [3 9]
Uitvoer : [2 3]
Uitleg: 1/3 + 3/9 = 2/3

Invoer : een = [1 5] b = [3 15]
Uitvoer : [2 5]
Uitleg: 1/5 + 3/15 = 2/5

Algoritme om twee breuken op te tellen

  • Vind een gemeenschappelijke noemer door de te vinden LCM (Kleinste Gemene Veelvoud) van de twee noemers.
  • Verander de breuken om dezelfde noemer te hebben en beide termen bij elkaar op te tellen.
  • Reduceer de verkregen uiteindelijke breuk in zijn eenvoudiger vorm door zowel de teller als de noemer te delen door hun grootste gemeenschappelijke deler.
C++
   #include       using     namespace     std  ;   // Function to find gcd of a and b   int     gcd  (  int     n1       int     n2  )   {      if     (  n1     ==     0  )      return     n2  ;      return     gcd  (  n2  %  n1       n1  );   }   //Function to add two fractions   vector   <  int  >     addFraction  (  vector   <  int  >     a       vector   <  int  >  b  )   {      vector   <  int  >     ans  ;         // Finding gcd of den1 and den2      int     den     =     gcd  (  a  [  1  ]  b  [  1  ]);      // Denominator of final fraction obtained      // finding LCM of den1 and den2      // LCM * GCD = a * b       den     =     (  a  [  1  ]  *  b  [  1  ])     /     den  ;      // Changing the fractions to have same denominator      // Numerator of the final fraction obtained      int     num     =     (  a  [  0  ])  *  (  den  /  a  [  1  ])     +     (  b  [  0  ])  *  (  den  /  b  [  1  ]);      // finding the common factor of numerator and denominator      int     common_factor     =     gcd  (  num    den  );      // Converting the result into simpler       // fraction by dividing them with common factor       den     =     den  /  common_factor  ;      num     =     num  /  common_factor  ;      ans  .  push_back  (  num  );         ans  .  push_back  (  den  );         return     ans  ;       }   int     main  ()   {      vector   <  int  >     a     =     {  1    2  };      vector   <  int  >     b     =     {  3    2  };      vector   <  int  >     ans     =     addFraction  (  a       b  );         cout   < <  ans  [  0  ]   < <  ' '   < <  ans  [  1  ];      return     0  ;   }   
C
   #include         // Function to find gcd of a and b   int     gcd  (  int     n1       int     n2  )   {      if     (  n1     ==     0  )      return     n2  ;      return     gcd  (  n2     %     n1       n1  );   }   // Function to add two fractions   void     addFraction  (  int     a  []     int     b  []     int     result  [])   {      // Finding gcd of den1 and den2      int     den     =     gcd  (  a  [  1  ]     b  [  1  ]);      // Denominator of final fraction obtained      // finding LCM of den1 and den2      // LCM * GCD = a * b       den     =     (  a  [  1  ]     *     b  [  1  ])     /     den  ;      // Changing the fractions to have same denominator      // Numerator of the final fraction obtained      int     num     =     (  a  [  0  ])     *     (  den     /     a  [  1  ])     +     (  b  [  0  ])     *     (  den     /     b  [  1  ]);      // finding the common factor of numerator and denominator      int     common_factor     =     gcd  (  num       den  );      // Converting the result into simpler       // fraction by dividing them with common factor       den     =     den     /     common_factor  ;      num     =     num     /     common_factor  ;      result  [  0  ]     =     num  ;      result  [  1  ]     =     den  ;   }   int     main  ()   {      int     a  []     =     {  1    2  };;      int     b  []     =     {  3    2  };;      int     ans  [  2  ];      addFraction  (  a       b       ans  );      printf  (  '%d %d'       ans  [  0  ]     ans  [  1  ]);      return     0  ;   }   
Java
   import     java.util.ArrayList  ;   import     java.util.List  ;   public     class   Main     {      // Function to find gcd of a and b      public     static     int     gcd  (  int     n1       int     n2  )     {      if     (  n1     ==     0  )      return     n2  ;      return     gcd  (  n2     %     n1       n1  );      }      // Function to add two fractions      public     static     List   <  Integer  >     addFraction  (  List   <  Integer  >     a       List   <  Integer  >     b  )     {      List   <  Integer  >     ans     =     new     ArrayList   <>  ();         // Finding gcd of den1 and den2      int     den     =     gcd  (  a  .  get  (  1  )     b  .  get  (  1  ));      // Denominator of final fraction obtained      // finding LCM of den1 and den2      // LCM * GCD = a * b       den     =     (  a  .  get  (  1  )     *     b  .  get  (  1  ))     /     den  ;      // Changing the fractions to have same denominator      // Numerator of the final fraction obtained      int     num     =     (  a  .  get  (  0  ))     *     (  den     /     a  .  get  (  1  ))     +     (  b  .  get  (  0  ))     *     (  den     /     b  .  get  (  1  ));      // finding the common factor of numerator and denominator      int     common_factor     =     gcd  (  num       den  );      // Converting the result into simpler       // fraction by dividing them with common factor       den     =     den     /     common_factor  ;      num     =     num     /     common_factor  ;      ans  .  add  (  num  );         ans  .  add  (  den  );         return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      List   <  Integer  >     a     =     new     ArrayList   <>  ();      a  .  add  (  1  );      a  .  add  (  2  );      List   <  Integer  >     b     =     new     ArrayList   <>  ();      b  .  add  (  3  );      b  .  add  (  2  );      List   <  Integer  >     ans     =     addFraction  (  a       b  );         System  .  out  .  println  (  ans  .  get  (  0  )     +     ' '     +     ans  .  get  (  1  ));      }   }   
Python
   from   math   import   gcd   # Function to add two fractions   def   addFraction  (  a     b  ):   # Finding gcd of den1 and den2   den   =   gcd  (  a  [  1  ]   b  [  1  ])   # Denominator of final fraction obtained   # finding LCM of den1 and den2   # LCM * GCD = a * b    den   =   (  a  [  1  ]   *   b  [  1  ])   //   den   # Changing the fractions to have same denominator   # Numerator of the final fraction obtained   num   =   (  a  [  0  ])   *   (  den   //   a  [  1  ])   +   (  b  [  0  ])   *   (  den   //   b  [  1  ])   # finding the common factor of numerator and denominator   common_factor   =   gcd  (  num     den  )   # Converting the result into simpler    # fraction by dividing them with common factor    den   //=   common_factor   num   //=   common_factor   return   [  num     den  ]   if   __name__   ==   '__main__'  :   a   =   [  1     2  ]   b   =   [  3     2  ]   ans   =   addFraction  (  a     b  )   print  (  f  '  {  ans  [  0  ]  }     {  ans  [  1  ]  }  '  )   
C#
   // Function to find gcd of a and b   int     gcd  (  int     n1       int     n2  )   {      if     (  n1     ==     0  )      return     n2  ;      return     gcd  (  n2     %     n1       n1  );   }   // Function to add two fractions   List   <  int  >     addFraction  (  List   <  int  >     a       List   <  int  >     b  )   {      List   <  int  >     ans     =     new     List   <  int  >  ();         // Finding gcd of den1 and den2      int     den     =     gcd  (  a  [  1  ]     b  [  1  ]);      // Denominator of final fraction obtained      // finding LCM of den1 and den2      // LCM * GCD = a * b       den     =     (  a  [  1  ]     *     b  [  1  ])     /     den  ;      // Changing the fractions to have same denominator      // Numerator of the final fraction obtained      int     num     =     (  a  [  0  ])     *     (  den     /     a  [  1  ])     +     (  b  [  0  ])     *     (  den     /     b  [  1  ]);      // finding the common factor of numerator and denominator      int     common_factor     =     gcd  (  num       den  );      // Converting the result into simpler       // fraction by dividing them with common factor       den     =     den     /     common_factor  ;      num     =     num     /     common_factor  ;      ans  .  Add  (  num  );         ans  .  Add  (  den  );         return     ans  ;   }   public     static     void     Main  ()   {      List   <  int  >     a     =     new     List   <  int  >     {  1    2  };      List   <  int  >     b     =     new     List   <  int  >     {  3    2  };      List   <  int  >     ans     =     addFraction  (  a       b  );         Console  .  WriteLine  (  ans  [  0  ]     +     ' '     +     ans  [  1  ]);   }   
JavaScript
   // Function to find gcd of a and b   function     gcd  (  n1       n2  )     {      if     (  n1     ===     0  )      return     n2  ;      return     gcd  (  n2     %     n1       n1  );   }   // Function to add two fractions   function     addFraction  (  a       b  )     {      let     ans     =     [];         // Finding gcd of den1 and den2      let     den     =     gcd  (  a  [  1  ]     b  [  1  ]);      // Denominator of final fraction obtained      // finding LCM of den1 and den2      // LCM * GCD = a * b       den     =     (  a  [  1  ]     *     b  [  1  ])     /     den  ;      // Changing the fractions to have same denominator      // Numerator of the final fraction obtained      let     num     =     (  a  [  0  ])     *     (  den     /     a  [  1  ])     +     (  b  [  0  ])     *     (  den     /     b  [  1  ]);      // finding the common factor of numerator and denominator      let     common_factor     =     gcd  (  num       den  );      // Converting the result into simpler       // fraction by dividing them with common factor       den     =     den     /     common_factor  ;      num     =     num     /     common_factor  ;      ans  .  push  (  num  );         ans  .  push  (  den  );         return     ans  ;   }   let     a     =     [  1       2  ];   let     b     =     [  3       2  ];   let     ans     =     addFraction  (  a       b  );      console  .  log  (  ans  [  0  ]     +     ' '     +     ans  [  1  ]);   

Uitvoer
2 1 

Tijdcomplexiteit : O(log(min(a b))
Hulpruimte : O(1)


Top Artikelen

Categorie

Interessante Artikelen