Druk alle manieren af ​​om een ​​tekenreeks in bracket -vorm te breken

Druk alle manieren af ​​om een ​​tekenreeks in bracket -vorm te breken

Gegeven een tekenreeks vind alle manieren om de gegeven string in bracket -vorm te breken. Voeg elke substring binnen een haakjes in.

Voorbeelden: 

Input : abc Output: (a)(b)(c) (a)(bc) (ab)(c) (abc) Input : abcd Output : (a)(b)(c)(d) (a)(b)(cd) (a)(bc)(d) (a)(bcd) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd) 

We raden u ten zeerste aan om uw browser te minimaliseren en dit eerst zelf te proberen.

Het idee is om recursie te gebruiken. We handhaven twee parameters - index van het volgende te verwerken teken en de uitvoerreeks tot nu toe. We starten van de index van het volgende teken dat moet worden verwerkt, appen -substring gevormd door onbewerkte string naar de uitvoerreeks en herstellen bij de resterende string totdat we de hele string verwerken. We gebruiken std :: substr om de uitvoerreeks te vormen. Substr (pos n) retourneert een substring van lengte n die begint bij positie POS van de huidige string.

Onder het diagram toont de recursieboom voor invoerreeks 'ABC'. Elk knooppunt op het diagram toont verwerkte string (gemarkeerd door groen) en onbewerkte string (gemarkeerd door rood).

breakastring

Hieronder is de implementatie van het bovenstaande idee

C++
   // C++ Program to find all combinations of Non-   // overlapping substrings formed from given   // string   #include          using     namespace     std  ;   // find all combinations of non-overlapping   // substrings formed by input string str   // index – index of the next character to   // be processed   // out - output string so far   void     findCombinations  (  string     str       int     index       string     out  )   {      if     (  index     ==     str  .  length  ())      cout      < <     out      < <     endl  ;      for     (  int     i     =     index  ;     i      <     str  .  length  ();     i  ++  )      {      // append substring formed by str[index      // i] to output string      findCombinations  (      str           i     +     1        out     +     '('     +     str  .  substr  (  index       i     +     1     -     index  )      +     ')'  );      }   }   // Driver Code   int     main  ()   {      // input string      string     str     =     'abcd'  ;      findCombinations  (  str       0       ''  );      return     0  ;   }   
Java
   // Java program to find all combinations of Non-   // overlapping substrings formed from given   // string   class   GFG      {      // find all combinations of non-overlapping      // substrings formed by input string str      static     void     findCombinations  (  String     str       int     index        String     out  )      {      if     (  index     ==     str  .  length  ())      System  .  out  .  println  (  out  );          for     (  int     i     =     index  ;     i      <     str  .  length  ();     i  ++  )          // append substring formed by str[index      // i] to output string      findCombinations  (  str       i     +     1       out     +      '('     +     str  .  substring  (  index       i  +  1  )     +     ')'     );      }          // Driver Code      public     static     void     main     (  String  []     args  )         {      // input string      String     str     =     'abcd'  ;      findCombinations  (  str       0       ''  );      }   }   // Contributed by Pramod Kumar   
Python3
   # Python3 Program to find all combinations of Non-   # overlapping substrings formed from given   # string   # find all combinations of non-overlapping   # substrings formed by input string str   # index – index of the next character to   # be processed   # out - output string so far   def   findCombinations  (  string     index     out  ):   if   index   ==   len  (  string  ):   print  (  out  )   for   i   in   range  (  index     len  (  string  )   1  ):   # append substring formed by str[index   # i] to output string   findCombinations  (  string     i   +   1     out   +   '('   +   string  [  index  :  i   +   1  ]   +   ')'  )   # Driver Code   if   __name__   ==   '__main__'  :   # input string   string   =   'abcd'   findCombinations  (  string     0     ''  )   # This code is contributed by   # sanjeev2552   
C#
   // C# program to find all combinations   // of Non-overlapping substrings formed   // from given string   using     System  ;   class     GFG     {      // find all combinations of non-overlapping      // substrings formed by input string str      public     static     void      findCombinations  (  string     str       int     index       string     @out  )      {      if     (  index     ==     str  .  Length  )     {      Console  .  WriteLine  (  @out  );      }      for     (  int     i     =     index  ;     i      <     str  .  Length  ;     i  ++  )     {      // append substring formed by      // str[index i] to output string      findCombinations  (      str       i     +     1        @out     +     '('      +     str  .  Substring  (  index       (  i     +     1  )     -     index  )      +     ')'  );      }      }      // Driver Code      public     static     void     Main  (  string  []     args  )      {      // input string      string     str     =     'abcd'  ;      findCombinations  (  str       0       ''  );      }   }   // This code is contributed by Shrikant13   
JavaScript
   // Javascript program for the above approach   // find all combinations of non-overlapping   // substrings formed by input string str   // index – index of the next character to   // be processed   // out - output string so far   function     findCombinations  (  string       index       out  )     {      if     (  index     ==     string  .  length  )     {      console  .  log  (  out  );      }      for     (  let     i     =     index  ;     i      <     string  .  length  ;     i  ++  )     {      // append substring formed by str[index      // i] to output string      findCombinations  (  string       i     +     1       out     +     '('     +     string  .  substring  (  index       i     +     1  )     +     ')'  );      }   }   // Driver Code   const     string     =     'abcd'  ;   findCombinations  (  string       0       ''  );   // contributed by adityasharmadev01   

Uitvoer
(a)(b)(c)(d) (a)(b)(cd) (a)(bc)(d) (a)(bcd) (ab)(c)(d) (ab)(cd) (abc)(d) (abcd) 

Tijdcomplexiteit: O (n 2 ))
Hulpruimte: O (n 2 ))