Grootste som aaneengesloten toenemende subarray

Grootste som aaneengesloten toenemende subarray
Probeer het eens op GfG Practice #practiceLinkDiv {weergave: geen! belangrijk; }

Gegeven een array van n positieve afzonderlijke gehele getallen. Het probleem is om de grootste som van aaneengesloten toenemende subarrays in O(n)-tijdcomplexiteit te vinden.

Voorbeelden:  

    Input     : arr[] = {2 1 4 7 3 6}   
Output : 12
Contiguous Increasing subarray {1 4 7} = 12
Input : arr[] = {38 7 8 10 12}
Output : 38
Recommended Practice Hebzuchtige Vos Probeer het!

A eenvoudige oplossing is om alle subarrays genereren en bereken hun sommen. Geef ten slotte de subarray met de maximale som terug. De tijdscomplexiteit van deze oplossing is O(n 2 ).

Een efficiënte oplossing is gebaseerd op het feit dat alle elementen positief zijn. We beschouwen dus de langst toenemende subarrays en vergelijken hun sommen. Het vergroten van subarrays kan niet overlappen, dus onze tijdscomplexiteit wordt O(n).

Algoritme:  

 Let      arr     be the array of size      n     
Let result be the required sum
int largestSum(arr n)
result = INT_MIN // Initialize result
i = 0
while i < n
// Find sum of longest increasing subarray
// starting with i
curr_sum = arr[i];
while i+1 < n && arr[i] < arr[i+1]
curr_sum += arr[i+1];
i++;
// If current sum is greater than current
// result.
if result < curr_sum
result = curr_sum;
i++;
return result

Hieronder vindt u de implementatie van het bovenstaande algoritme.

C++
   // C++ implementation of largest sum   // contiguous increasing subarray   #include          using     namespace     std  ;   // Returns sum of longest   // increasing subarray.   int     largestSum  (  int     arr  []     int     n  )   {      // Initialize result      int     result     =     INT_MIN  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver Code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Largest sum = '      < <     largestSum  (  arr       n  );      return     0  ;   }   
Java
   // Java implementation of largest sum   // contiguous increasing subarray   class   GFG     {      // Returns sum of longest      // increasing subarray.      static     int     largestSum  (  int     arr  []       int     n  )      {      // Initialize result      int     result     =     -  9999999  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ]  ;      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ]  )     {      curr_sum     +=     arr  [  i     +     1  ]  ;      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   
Python3
   # Python3 implementation of largest   # sum contiguous increasing subarray   # Returns sum of longest   # increasing subarray.   def   largestSum  (  arr     n  ):   # Initialize result   result   =   -  2147483648   # Note that i is incremented   # by inner loop also so overall   # time complexity is O(n)   for   i   in   range  (  n  ):   # Find sum of longest increasing   # subarray starting from arr[i]   curr_sum   =   arr  [  i  ]   while   (  i   +   1    <   n   and   arr  [  i   +   1  ]   >   arr  [  i  ]):   curr_sum   +=   arr  [  i   +   1  ]   i   +=   1   # Update result if required   if   (  curr_sum   >   result  ):   result   =   curr_sum   # required largest sum   return   result   # Driver Code   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  'Largest sum = '     largestSum  (  arr     n  ))   # This code is contributed by Anant Agarwal.   
C#
   // C# implementation of largest sum   // contiguous increasing subarray   using     System  ;   class     GFG     {      // Returns sum of longest      // increasing subarray.      static     int     largestSum  (  int  []     arr       int     n  )      {      // Initialize result      int     result     =     -  9999999  ;      // Note that i is incremented by      // inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest increasing      // subarray starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;      }      // Driver code      public     static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  Write  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed   // by Nitin Mittal.   
JavaScript
    <  script  >   // Javascript implementation of largest sum   // contiguous increasing subarray   // Returns sum of longest   // increasing subarray.   function     largestSum  (  arr       n  )   {      // Initialize result      var     result     =     -  1000000000  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  var     i     =     0  ;     i      <     n  ;     i  ++  )      {      // Find sum of longest       // increasing subarray       // starting from arr[i]      var     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&         arr  [  i     +     1  ]     >     arr  [  i  ])      {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver Code   var     arr     =     [  1       1       4       7       3       6  ];   var     n     =     arr  .  length  ;   document  .  write  (     'Largest sum = '         +     largestSum  (  arr       n  ));   // This code is contributed by itsok.    <  /script>   
PHP
      // PHP implementation of largest sum   // contiguous increasing subarray   // Returns sum of longest    // increasing subarray.   function   largestSum  (  $arr     $n  )   {   $INT_MIN   =   0  ;   // Initialize result   $result   =   $INT_MIN  ;   // Note that i is incremented    // by inner loop also so overall   // time complexity is O(n)   for   (  $i   =   0  ;   $i    <   $n  ;   $i  ++  )   {   // Find sum of longest    // increasing subarray   // starting from arr[i]   $curr_sum   =   $arr  [  $i  ];   while   (  $i   +   1    <   $n   &&   $arr  [  $i   +   1  ]   >   $arr  [  $i  ])   {   $curr_sum   +=   $arr  [  $i   +   1  ];   $i  ++  ;   }   // Update result if required   if   (  $curr_sum   >   $result  )   $result   =   $curr_sum  ;   }   // required largest sum   return   $result  ;   }   // Driver Code   {   $arr   =   array  (  1     1     4     7     3     6  );   $n   =   sizeof  (  $arr  )   /   sizeof  (  $arr  [  0  ]);   echo   'Largest sum = '      largestSum  (  $arr     $n  );   return   0  ;   }   // This code is contributed by nitin mittal.   ?>   

Uitvoer
Largest sum = 12 

Tijdcomplexiteit: O(n)

 

Grootste som aaneengesloten toenemende subarray Gebruikt Recursie

Recursief algoritme om dit probleem op te lossen:

Hier is het stapsgewijze algoritme van het probleem:

  1. De functie 'grootste som' neemt array 'arr' en de maat is 'N'.
  2. Als   'n==1' keer dan terug arr[0]de element.
  3. Als 'n != 1' dan roept een recursieve functie de functie aan 'grootste som'   om de grootste som van de subarray te vinden 'arr[0...n-1]' met uitzondering van het laatste element 'arr[n-1]' .
  4.  Door de array in omgekeerde volgorde te doorlopen, te beginnen met het voorlaatste element, bereken je de som van de toenemende subarray eindigend op 'arr[n-1]' . Als het ene element kleiner is dan het volgende, moet het bij de huidige som worden opgeteld. Anders moet de lus worden verbroken.
  5. Retourneer vervolgens het maximum van het grootste bedrag, d.w.z. ' return max(max_sum curr_sum);' .
     

Hier is de implementatie van het bovenstaande algoritme:

C++
   #include          using     namespace     std  ;   // Recursive function to find the largest sum   // of contiguous increasing subarray   int     largestSum  (  int     arr  []     int     n  )   {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      int     max_sum     =     max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]);      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ];      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     max  (  max_sum       curr_sum  );   }   // Driver Code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      cout      < <     'Largest sum = '      < <     largestSum  (  arr       n  );      return     0  ;   }   // This code is contributed by Vaibhav Saroj.   
C
   #include         #include         // Returns sum of longest increasing subarray   int     largestSum  (  int     arr  []     int     n  )   {      // Initialize result      int     result     =     INT_MIN  ;      // Note that i is incremented      // by inner loop also so overall      // time complexity is O(n)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      // Find sum of longest      // increasing subarray      // starting from arr[i]      int     curr_sum     =     arr  [  i  ];      while     (  i     +     1      <     n     &&     arr  [  i     +     1  ]     >     arr  [  i  ])     {      curr_sum     +=     arr  [  i     +     1  ];      i  ++  ;      }      // Update result if required      if     (  curr_sum     >     result  )      result     =     curr_sum  ;      }      // required largest sum      return     result  ;   }   // Driver code   int     main  ()   {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )     /     sizeof  (  arr  [  0  ]);      printf  (  'Largest sum = %d  n  '       largestSum  (  arr       n  ));      return     0  ;   }   // This code is contributed by Vaibhav Saroj.   
Java
   /*package whatever //do not write package name here */   import     java.util.*  ;   public     class   Main     {      // Recursive function to find the largest sum      // of contiguous increasing subarray      public     static     int     largestSum  (  int     arr  []       int     n  )      {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ]  ;      // Recursive call to find the largest sum      int     max_sum      =     Math  .  max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]  );      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ]  ;      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ]  )      curr_sum     +=     arr  [  i  ]  ;      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  max  (  max_sum       curr_sum  );      }      // Driver code      public     static     void     main  (  String  []     args  )      {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed by Vaibhav Saroj.   
Python
   def   largestSum  (  arr     n  ):   # Base case   if   n   ==   1  :   return   arr  [  0  ]   # Recursive call to find the largest sum   max_sum   =   max  (  largestSum  (  arr     n  -  1  )   arr  [  n  -  1  ])   # Compute the sum of the increasing subarray   curr_sum   =   arr  [  n  -  1  ]   for   i   in   range  (  n  -  2     -  1     -  1  ):   if   arr  [  i  ]    <   arr  [  i  +  1  ]:   curr_sum   +=   arr  [  i  ]   else  :   break   # Return the maximum of the largest sum so far   # and the sum of the current increasing subarray   return   max  (  max_sum     curr_sum  )   # Driver code   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  'Largest sum ='     largestSum  (  arr     n  ))   # This code is contributed by Vaibhav Saroj.   
C#
   // C# program for above approach   using     System  ;   public     static     class     GFG     {      // Recursive function to find the largest sum      // of contiguous increasing subarray      public     static     int     largestSum  (  int  []     arr       int     n  )      {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      int     max_sum      =     Math  .  Max  (  largestSum  (  arr       n     -     1  )     arr  [  n     -     1  ]);      // Compute the sum of the increasing subarray      int     curr_sum     =     arr  [  n     -     1  ];      for     (  int     i     =     n     -     2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i     +     1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  Max  (  max_sum       curr_sum  );      }      // Driver code      public     static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (  'Largest sum = '      +     largestSum  (  arr       n  ));      }   }   // This code is contributed by Utkarsh Kumar   
JavaScript
   function     largestSum  (  arr       n  )     {      // Base case      if     (  n     ==     1  )      return     arr  [  0  ];      // Recursive call to find the largest sum      let     max_sum     =     Math  .  max  (  largestSum  (  arr       n  -  1  )     arr  [  n  -  1  ]);      // Compute the sum of the increasing subarray      let     curr_sum     =     arr  [  n  -  1  ];      for     (  let     i     =     n  -  2  ;     i     >=     0  ;     i  --  )     {      if     (  arr  [  i  ]      <     arr  [  i  +  1  ])      curr_sum     +=     arr  [  i  ];      else      break  ;      }      // Return the maximum of the largest sum so far      // and the sum of the current increasing subarray      return     Math  .  max  (  max_sum       curr_sum  );   }   // Driver Code   let     arr     =     [  1       1       4       7       3       6  ];   let     n     =     arr  .  length  ;   console  .  log  (  'Largest sum = '     +     largestSum  (  arr       n  ));   
PHP
      // Recursive function to find the largest sum   // of contiguous increasing subarray   function   largestSum  (  $arr     $n  )   {   // Base case   if   (  $n   ==   1  )   return   $arr  [  0  ];   // Recursive call to find the largest sum   $max_sum   =   max  (  largestSum  (  $arr     $n  -  1  )   $arr  [  $n  -  1  ]);   // Compute the sum of the increasing subarray   $curr_sum   =   $arr  [  $n  -  1  ];   for   (  $i   =   $n  -  2  ;   $i   >=   0  ;   $i  --  )   {   if   (  $arr  [  $i  ]    <   $arr  [  $i  +  1  ])   $curr_sum   +=   $arr  [  $i  ];   else   break  ;   }   // Return the maximum of the largest sum so far   // and the sum of the current increasing subarray   return   max  (  $max_sum     $curr_sum  );   }   // Driver Code   $arr   =   array  (  1     1     4     7     3     6  );   $n   =   count  (  $arr  );   echo   'Largest sum = '   .   largestSum  (  $arr     $n  );   ?>   

Uitvoer
Largest sum = 12 

Tijdcomplexiteit: O(n^2).
Ruimtecomplexiteit: Op).

Grootste som aaneengesloten toenemende subarray Met behulp van Kadane's algoritme: -

Om de subarray met de grootste som te krijgen, wordt de benadering van Kadane gebruikt, maar deze veronderstelt dat de array zowel positieve als negatieve waarden bevat. In dit geval moeten we het algoritme zo veranderen dat het alleen werkt op aaneengesloten stijgende subarrays.

Hieronder ziet u hoe we het algoritme van Kadane kunnen aanpassen om de grootste som aaneengesloten toenemende subarray te vinden:

  1. Initialiseer twee variabelen: max_sum en curr_sum naar het eerste element van de array.
  2. Loop door de array, beginnend bij het tweede element.
  3. als het huidige element groter is dan het vorige element, voeg het dan toe aan de curr_sum. Reset anders curr_sum naar het huidige element.
  4. Als curr_sum groter is dan max_sum, update max_sum.
  5. Na de lus zal max_sum de grootste som aaneengesloten toenemende subarray bevatten.
     
C++
   #include          using     namespace     std  ;   int     largest_sum_contiguous_increasing_subarray  (  int     arr  []     int     n  )     {      int     max_sum     =     arr  [  0  ];      int     curr_sum     =     arr  [  0  ];      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     arr  [  i  -1  ])     {      curr_sum     +=     arr  [  i  ];      }      else     {      curr_sum     =     arr  [  i  ];      }      if     (  curr_sum     >     max_sum  )     {      max_sum     =     curr_sum  ;      }      }      return     max_sum  ;   }   int     main  ()     {      int     arr  []     =     {     1       1       4       7       3       6     };      int     n     =     sizeof  (  arr  )  /  sizeof  (  arr  [  0  ]);      cout      < <     largest_sum_contiguous_increasing_subarray  (  arr       n  )      < <     endl  ;     // Output: 44 (1+2+3+5+7+8+9+10)      return     0  ;   }   
Java
   public     class   Main     {      public     static     int     largestSumContiguousIncreasingSubarray  (  int  []     arr           int     n  )     {      int     maxSum     =     arr  [  0  ]  ;      int     currSum     =     arr  [  0  ]  ;      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]     >     arr  [  i  -  1  ]  )     {      currSum     +=     arr  [  i  ]  ;      }      else     {      currSum     =     arr  [  i  ]  ;      }      if     (  currSum     >     maxSum  )     {      maxSum     =     currSum  ;      }      }      return     maxSum  ;      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  length  ;      System  .  out  .  println  (  largestSumContiguousIncreasingSubarray  (  arr        n  ));     // Output: 44 (1+2+3+5+7+8+9+10)      }   }   
Python3
   def   largest_sum_contiguous_increasing_subarray  (  arr     n  ):   max_sum   =   arr  [  0  ]   curr_sum   =   arr  [  0  ]   for   i   in   range  (  1     n  ):   if   arr  [  i  ]   >   arr  [  i  -  1  ]:   curr_sum   +=   arr  [  i  ]   else  :   curr_sum   =   arr  [  i  ]   if   curr_sum   >   max_sum  :   max_sum   =   curr_sum   return   max_sum   arr   =   [  1     1     4     7     3     6  ]   n   =   len  (  arr  )   print  (  largest_sum_contiguous_increasing_subarray  (  arr     n  ))   #output 12 (1+4+7)   
C#
   using     System  ;   class     GFG     {      // Function to find the largest sum of a contiguous      // increasing subarray      static     int      LargestSumContiguousIncreasingSubarray  (  int  []     arr       int     n  )      {      int     maxSum     =     arr  [  0  ];     // Initialize the maximum sum      // and current sum      int     currSum     =     arr  [  0  ];      for     (  int     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]      >     arr  [  i     -     1  ])     // Check if the current      // element is greater than the      // previous element      {      currSum      +=     arr  [  i  ];     // If increasing add the      // element to the current sum      }      else     {      currSum      =     arr  [  i  ];     // If not increasing start a      // new increasing subarray      // from the current element      }      if     (  currSum      >     maxSum  )     // Update the maximum sum if the      // current sum is greater      {      maxSum     =     currSum  ;      }      }      return     maxSum  ;      }      static     void     Main  ()      {      int  []     arr     =     {     1       1       4       7       3       6     };      int     n     =     arr  .  Length  ;      Console  .  WriteLine  (      LargestSumContiguousIncreasingSubarray  (  arr       n  ));      }   }   // This code is contributed by akshitaguprzj3   
JavaScript
      // Javascript code for above approach          // Function to find the largest sum of a contiguous      // increasing subarray      function     LargestSumContiguousIncreasingSubarray  (  arr       n  )      {      let     maxSum     =     arr  [  0  ];     // Initialize the maximum sum      // and current sum      let     currSum     =     arr  [  0  ];          for     (  let     i     =     1  ;     i      <     n  ;     i  ++  )     {      if     (  arr  [  i  ]      >     arr  [  i     -     1  ])     // Check if the current      // element is greater than the      // previous element      {      currSum      +=     arr  [  i  ];     // If increasing add the      // element to the current sum      }      else     {      currSum      =     arr  [  i  ];     // If not increasing start a      // new increasing subarray      // from the current element      }          if     (  currSum      >     maxSum  )     // Update the maximum sum if the      // current sum is greater      {      maxSum     =     currSum  ;      }      }          return     maxSum  ;      }          let     arr     =     [     1       1       4       7       3       6     ];      let     n     =     arr  .  length  ;      console  .  log  (  LargestSumContiguousIncreasingSubarray  (  arr       n  ));              // This code is contributed by Pushpesh Raj       

Uitvoer
12 

Tijdcomplexiteit: O(n).
Ruimtecomplexiteit: O(1).

Quiz maken