Deficiënt nummer

Deficiënt nummer
Probeer het eens op GfG Practice #practiceLinkDiv {weergave: geen! belangrijk; }

Van een getal n wordt gezegd dat het een ontoereikend getal is als het de som is van alle delers van het getal aangegeven met delersSom(n) is minder dan tweemaal de waarde van het getal n. En het verschil tussen deze twee waarden wordt de tekort .
Wiskundig gezien, als de onderstaande voorwaarde geldt, wordt gezegd dat het getal ontoereikend is: 
 

  divisorsSum(n)  < 2 * n     deficiency   = (2 * n) - divisorsSum(n) 


De eerste paar gebrekkige nummers zijn:
1 2 3 4 5 7 8 9 10 11 13 14 15 16 17 19 .....
Gegeven een getal n is het onze taak om uit te zoeken of dit getal een Deficiënt getal is of niet. 
Voorbeelden:  
 

Input: 21 Output: YES Divisors are 1 3 7 and 21. Sum of divisors is 32. This sum is less than 2*21 or 42. Input: 12 Output: NO Input: 17 Output: YES 


 

Aanbevolen praktijk Deficiënt nummer Probeer het!


A Eenvoudige oplossing is om alle getallen van 1 tot n te herhalen en te controleren of het getal n deelt en de som te berekenen. Controleer of deze som kleiner is dan 2 * n of niet.
Tijdcomplexiteit van deze aanpak: O ( n )
Geoptimaliseerde oplossing:  
Als we goed kijken, zijn de delers van het getal n paarsgewijs aanwezig. Als n = 100 bijvoorbeeld zijn alle paren delers: (1 100) (2 50) (4 25) (5 20) (10 10)
Door dit feit te gebruiken, kunnen we ons programma versnellen. 
Bij het controleren van delers zullen we voorzichtig moeten zijn als er twee gelijke delers zijn, zoals in het geval van (10 10). In dat geval nemen we slechts één ervan mee bij de berekening van de som.
Implementatie van een geoptimaliseerde aanpak 
 

C++
   // C++ program to implement an Optimized Solution   // to check Deficient Number   #include          using     namespace     std  ;   // Function to calculate sum of divisors   int     divisorsSum  (  int     n  )   {      int     sum     =     0  ;     // Initialize sum of prime factors      // Note that this loop runs till square root of n      for     (  int     i     =     1  ;     i      <=     sqrt  (  n  );     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;   }   // Function to check Deficient Number   bool     isDeficient  (  int     n  )   {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));   }   /* Driver program to test above function */   int     main  ()   {      isDeficient  (  12  )     ?     cout      < <     'YES  n  '     :     cout      < <     'NO  n  '  ;      isDeficient  (  15  )     ?     cout      < <     'YES  n  '     :     cout      < <     'NO  n  '  ;      return     0  ;   }   
Java
   // Java program to check Deficient Number   import     java.io.*  ;   class   GFG     {      // Function to calculate sum of divisors      static     int     divisorsSum  (  int     n  )      {      int     sum     =     0  ;     // Initialize sum of prime factors      // Note that this loop runs till square root of n      for     (  int     i     =     1  ;     i      <=     (  Math  .  sqrt  (  n  ));     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;      }      // Function to check Deficient Number      static     boolean     isDeficient  (  int     n  )      {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }      /* Driver program to test above function */      public     static     void     main  (  String     args  []  )      {      if     (  isDeficient  (  12  ))      System  .  out  .  println  (  'YES'  );      else      System  .  out  .  println  (  'NO'  );      if     (  isDeficient  (  15  ))      System  .  out  .  println  (  'YES'  );      else      System  .  out  .  println  (  'NO'  );      }   }   // This code is contributed by Nikita Tiwari   
Python3
   # Python program to implement an Optimized    # Solution to check Deficient Number   import   math   # Function to calculate sum of divisors   def   divisorsSum  (  n  )   :   sum   =   0   # Initialize sum of prime factors   # Note that this loop runs till square   # root of n   i   =   1   while   i   <=   math  .  sqrt  (  n  )   :   if   (  n   %   i   ==   0  )   :   # If divisors are equal take only one   # of them   if   (  n   //   i   ==   i  )   :   sum   =   sum   +   i   else   :   # Otherwise take both   sum   =   sum   +   i  ;   sum   =   sum   +   (  n   //   i  )   i   =   i   +   1   return   sum   # Function to check Deficient Number   def   isDeficient  (  n  )   :   # Check if sum(n)  < 2 * n   return   (  divisorsSum  (  n  )    <   (  2   *   n  ))   # Driver program to test above function    if   (   isDeficient  (  12  )   ):   print   (  'YES'  )   else   :   print   (  'NO'  )   if   (   isDeficient  (  15  )   )   :   print   (  'YES'  )   else   :   print   (  'NO'  )   # This Code is contributed by Nikita Tiwari   
C#
   // C# program to implement an Optimized Solution   // to check Deficient Number   using     System  ;   class     GFG     {      // Function to calculate sum of      // divisors      static     int     divisorsSum  (  int     n  )      {      // Initialize sum of prime factors      int     sum     =     0  ;      // Note that this loop runs till      // square root of n      for     (  int     i     =     1  ;     i      <=     (  Math  .  Sqrt  (  n  ));     i  ++  )     {      if     (  n     %     i     ==     0  )     {      // If divisors are equal      // take only one of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }      return     sum  ;      }      // Function to check Deficient Number      static     bool     isDeficient  (  int     n  )      {      // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }      /* Driver program to test above function */      public     static     void     Main  ()      {      string     var     =     isDeficient  (  12  )     ?     'YES'     :     'NO'  ;      Console  .  WriteLine  (  var  );      string     var1     =     isDeficient  (  15  )     ?     'YES'     :     'NO'  ;      Console  .  WriteLine  (  var1  );      }   }   // This code is contributed by vt_m   
PHP
      // PHP program to implement    // an Optimized Solution   // to check Deficient Number   // Function to calculate   // sum of divisors   function   divisorsSum  (  $n  )   {   // Initialize sum of   // prime factors   $sum   =   0  ;   // Note that this loop runs    // till square root of n   for   (  $i   =   1  ;   $i    <=   sqrt  (  $n  );   $i  ++  )   {   if   (  $n   %   $i  ==  0  )   {   // If divisors are equal    // take only one of them   if   (  $n   /   $i   ==   $i  )   {   $sum   =   $sum   +   $i  ;   }   // Otherwise take both   else   {   $sum   =   $sum   +   $i  ;   $sum   =   $sum   +   (  $n   /   $i  );   }   }   }   return   $sum  ;   }   // Function to check   // Deficient Number   function   isDeficient  (  $n  )   {   // Check if sum(n)  < 2 * n   return   (  divisorsSum  (  $n  )    <   (  2   *   $n  ));   }   // Driver Code   $ds   =   isDeficient  (  12  )   ?   'YES  n  '   :   'NO  n  '  ;   echo  (  $ds  );   $ds   =   isDeficient  (  15  )   ?   'YES  n  '   :   'NO  n  '  ;   echo  (  $ds  );   // This code is contributed by ajit;.   ?>   
JavaScript
    <  script  >   // Javascript program to check Deficient Number      // Function to calculate sum of divisors      function     divisorsSum  (  n  )      {      let     sum     =     0  ;     // Initialize sum of prime factors          // Note that this loop runs till square root of n      for     (  let     i     =     1  ;     i      <=     (  Math  .  sqrt  (  n  ));     i  ++  )      {      if     (  n     %     i     ==     0  )         {          // If divisors are equal take only one      // of them      if     (  n     /     i     ==     i  )     {      sum     =     sum     +     i  ;      }      else     // Otherwise take both      {      sum     =     sum     +     i  ;      sum     =     sum     +     (  n     /     i  );      }      }      }          return     sum  ;      }          // Function to check Deficient Number      function     isDeficient  (  n  )      {          // Check if sum(n)  < 2 * n      return     (  divisorsSum  (  n  )      <     (  2     *     n  ));      }   // Driver code to test above methods      if     (  isDeficient  (  12  ))      document  .  write  (  'YES'     +     '  
'
); else document . write ( 'NO' + '
'
); if ( isDeficient ( 15 )) document . write ( 'YES' + '
'
); else document . write ( 'NO' + '
'
); // This code is contributed by avijitmondal1998. < /script>

Uitgang:  
 

NO YES 


Tijdcomplexiteit: O( sqrt( n )) 
Hulpruimte: O(1)
Referenties: 
https://en.wikipedia.org/wiki/Deficiënt_nummer