Minimālais mijmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku

Minimālais mijmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku

Dots masīvs arr[] kas apzīmē a Pilnīgs binārais koks i., ja indekss i ir vecāks rādītājs 2*i + 1 ir atstāts bērns un indekss 2*i + 2 ir īstais bērns. Uzdevums ir atrast minimums skaits mijmaiņas darījumi nepieciešams, lai to pārvērstu par a Binārais meklēšanas koks.

Piemēri:  

Ievade: arr[] = [5 6 7 8 9 10 11]
Izvade: 3
Paskaidrojums:
Dotā masīva binārais koks:

Minimālais apmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku-1

1. mijmaiņa: nomainiet 8. mezglu ar 5. mezglu.
2. mijmaiņa: nomainiet 9. mezglu ar 10. mezglu.
3. mijmaiņa: nomainiet mezglu 10 ar mezglu 7.

Tātad, lai iegūtu tālāk redzamo bināro meklēšanas koku, ir nepieciešami vismaz 3 mijmaiņas darījumi:

Minimālais apmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku-3


Ievade: arr[] = [1 2 3]
Izvade: 1
Paskaidrojums:
Dotā masīva binārais koks:

Minimālais apmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku-2

Pēc mezgla 1 maiņas ar 2. mezglu iegūstiet tālāk redzamo bināro meklēšanas koku:

Minimālais apmaiņas apjoms, kas nepieciešams, lai pārveidotu bināro koku par bināro meklēšanas koku-4

Pieeja:

Ideja ir izmantot faktu, ka pasūtījuma šķērsošana no Binārais meklēšanas koks ir iekšā pieaug to vērtības secībā. 
Tātad atrodiet pasūtījuma šķērsošana no Binārā koka un saglabājiet to masīvā un mēģināt kārtot masīvs. The minimālais mijmaiņas darījumu skaits, kas nepieciešams, lai masīvs sakārtotu būs atbilde.

C++
   // C++ program for Minimum swap required   // to convert binary tree to binary search tree   #include       using     namespace     std  ;   // Function to perform inorder traversal of the binary tree   // and store it in vector v   void     inorder  (  vector   <  int  >&     arr       vector   <  int  >&     inorderArr       int     index  )     {          int     n     =     arr  .  size  ();          // If index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );          // Store current node value in vector      inorderArr  .  push_back  (  arr  [  index  ]);          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps    // to sort inorder traversal   int     minSwaps  (  vector   <  int  >&     arr  )     {      int     n     =     arr  .  size  ();      vector   <  int  >     inorderArr  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );          // Create an array of pairs to store value      // and original index      vector   <  pair   <  int       int  >>     t  (  inorderArr  .  size  ());      int     ans     =     0  ;          // Store the value and its index      for     (  int     i     =     0  ;     i      <     inorderArr  .  size  ();     i  ++  )      t  [  i  ]     =     {  inorderArr  [  i  ]     i  };          // Sort the pair array based on values       // to get BST order      sort  (  t  .  begin  ()     t  .  end  ());          // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     t  .  size  ();     i  ++  )     {          // If the element is already in the       // correct position continue      if     (  i     ==     t  [  i  ].  second  )      continue  ;          // Otherwise perform swaps until the element      // is in the right place      else     {          // Swap elements to correct positions      swap  (  t  [  i  ].  first       t  [  t  [  i  ].  second  ].  first  );      swap  (  t  [  i  ].  second       t  [  t  [  i  ].  second  ].  second  );      }          // Check if the element is still not      // in the correct position      if     (  i     !=     t  [  i  ].  second  )      --  i  ;             // Increment swap count      ans  ++  ;      }          return     ans  ;   }   int     main  ()     {          vector   <  int  >     arr     =     {     5       6       7       8       9       10       11     };      cout      < <     minSwaps  (  arr  )      < <     endl  ;   }   
Java
   // Java program for Minimum swap required   // to convert binary tree to binary search tree   import     java.util.Arrays  ;   class   GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     inorder  (  int  []     arr       int  []     inorderArr           int     index       int  []     counter  )     {      int     n     =     arr  .  length  ;          // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;          // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1       counter  );          // Store current node value in the inorder array      inorderArr  [  counter  [  0  ]]     =     arr  [  index  ]  ;      counter  [  0  ]++  ;          // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2       counter  );      }      // Function to calculate minimum swaps       // to sort inorder traversal      static     int     minSwaps  (  int  []     arr  )     {      int     n     =     arr  .  length  ;      int  []     inorderArr     =     new     int  [  n  ]  ;      int  []     counter     =     new     int  [  1  ]  ;          // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0       counter  );          // Create an array of pairs to store the value       // and its original index      int  [][]     t     =     new     int  [  n  ][  2  ]  ;      int     ans     =     0  ;          // Store the value and its original index      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ][  0  ]     =     inorderArr  [  i  ]  ;      t  [  i  ][  1  ]     =     i  ;      }          // Sort the array based on values to get BST order      Arrays  .  sort  (  t       (  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // Find minimum swaps by detecting cycles      boolean  []     visited     =     new     boolean  [  n  ]  ;          // Iterate through the array to find cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If the element is already visited or in      // the correct place continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ==     i  )      continue  ;          // Start a cycle and find the number of      // nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;          while     (  !  visited  [  j  ]  )     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ]  ;      cycleSize  ++  ;      }          // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }          // Return the total number of swaps      return     ans  ;      }      public     static     void     main  (  String  []     args  )     {      int  []     arr     =     {  5       6       7       8       9       10       11  };         System  .  out  .  println  (  minSwaps  (  arr  ));      }   }   
Python
   # Python program for Minimum swap required   # to convert binary tree to binary search tree   # Function to perform inorder traversal of the binary tree   # and store it in an array   def   inorder  (  arr     inorderArr     index  ):   # If index is out of bounds return   n   =   len  (  arr  )   if   index   >=   n  :   return   # Recursively visit left subtree   inorder  (  arr     inorderArr     2   *   index   +   1  )   # Store current node value in inorderArr   inorderArr  .  append  (  arr  [  index  ])   # Recursively visit right subtree   inorder  (  arr     inorderArr     2   *   index   +   2  )   # Function to calculate minimum swaps    # to sort inorder traversal   def   minSwaps  (  arr  ):   inorderArr   =   []   # Get the inorder traversal of the binary tree   inorder  (  arr     inorderArr     0  )   # Create a list of pairs to store value and original index   t   =   [(  inorderArr  [  i  ]   i  )   for   i   in   range  (  len  (  inorderArr  ))]   ans   =   0   # Sort the list of pairs based on values   # to get BST order   t  .  sort  ()   # Initialize visited array   visited   =   [  False  ]   *   len  (  t  )   # Find minimum swaps by detecting cycles   for   i   in   range  (  len  (  t  )):   # If already visited or already in the   # correct place skip   if   visited  [  i  ]   or   t  [  i  ][  1  ]   ==   i  :   continue   # Start a cycle and find the number of    # nodes in the cycle   cycleSize   =   0   j   =   i   # Process all elements in the cycle   while   not   visited  [  j  ]:   visited  [  j  ]   =   True   j   =   t  [  j  ][  1  ]   cycleSize   +=   1   # If there is a cycle of size `cycle_size` we    # need `cycle_size - 1` swaps   if   cycleSize   >   1  :   ans   +=   (  cycleSize   -   1  )   # Return total number of swaps   return   ans   if   __name__   ==   '__main__'  :   arr   =   [  5     6     7     8     9     10     11  ]   print  (  minSwaps  (  arr  ))   
C#
   // C# program for Minimum swap required   // to convert binary tree to binary search tree   using     System  ;   using     System.Linq  ;   class     GfG     {          // Function to perform inorder traversal of the binary tree      // and store it in an array      static     void     Inorder  (  int  []     arr       int  []     inorderArr       int     index       ref     int     counter  )     {      int     n     =     arr  .  Length  ;      // Base case: if index is out of bounds return      if     (  index     >=     n  )      return  ;      // Recursively visit left subtree      Inorder  (  arr       inorderArr       2     *     index     +     1       ref     counter  );      // Store current node value in inorderArr      inorderArr  [  counter  ]     =     arr  [  index  ];      counter  ++  ;      // Recursively visit right subtree      Inorder  (  arr       inorderArr       2     *     index     +     2       ref     counter  );      }      // Function to calculate minimum      // swaps to sort inorder traversal      static     int     MinSwaps  (  int  []     arr  )     {      int     n     =     arr  .  Length  ;      int  []     inorderArr     =     new     int  [  n  ];      int     counter     =     0  ;      // Get the inorder traversal of the binary tree      Inorder  (  arr       inorderArr       0       ref     counter  );      // Create an array of pairs to store value       // and original index      var     t     =     new     (  int       int  )[  n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      t  [  i  ]     =     (  inorderArr  [  i  ]     i  );      }      // Sort the array based on values to get BST order      Array  .  Sort  (  t       (  a       b  )     =>     a  .  Item1  .  CompareTo  (  b  .  Item1  ));      // Initialize visited array      bool  []     visited     =     new     bool  [  n  ];      int     ans     =     0  ;      // Find minimum swaps by detecting cycles      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {          // If already visited or already in       // the correct place skip      if     (  visited  [  i  ]     ||     t  [  i  ].  Item2     ==     i  )      continue  ;      // Start a cycle and find the number       // of nodes in the cycle      int     cycleSize     =     0  ;      int     j     =     i  ;      // Process all elements in the cycle      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ].  Item2  ;      cycleSize  ++  ;      }      // If there is a cycle of size `cycle_size` we      // need `cycle_size - 1` swaps      if     (  cycleSize     >     1  )      {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;      }      static     void     Main  (  string  []     args  )     {          int  []     arr     =     {     5       6       7       8       9       10       11     };      Console  .  WriteLine  (  MinSwaps  (  arr  ));      }   }   
JavaScript
   // Javascript program for Minimum swap required   // to convert binary tree to binary search tree   // Inorder traversal to get values in sorted order   function     inorder  (  arr       inorderArr       index  )     {      // If index is out of bounds return      if     (  index     >=     arr  .  length  )      return  ;      // Recursively visit left subtree      inorder  (  arr       inorderArr       2     *     index     +     1  );      // Store current node value in array      inorderArr  .  push  (  arr  [  index  ]);      // Recursively visit right subtree      inorder  (  arr       inorderArr       2     *     index     +     2  );   }   // Function to calculate minimum swaps to sort inorder   // traversal   function     minSwaps  (  arr  )     {      let     inorderArr     =     [];      // Get the inorder traversal of the binary tree      inorder  (  arr       inorderArr       0  );      // Create an array of pairs to store value and original      // index      let     t     =     inorderArr  .  map  ((  val       i  )     =>     [  val       i  ]);      let     ans     =     0  ;      // Sort the pair array based on values to get BST order      t  .  sort  ((  a       b  )     =>     a  [  0  ]     -     b  [  0  ]);      // Find minimum swaps by detecting cycles      let     visited     =     Array  (  arr  .  length  )      .  fill  (  false  );      for     (  let     i     =     0  ;     i      <     t  .  length  ;     i  ++  )     {          // If the element is already in the correct      // position continue      if     (  visited  [  i  ]     ||     t  [  i  ][  1  ]     ===     i  )      continue  ;      // Otherwise perform swaps until the element is in      // the right place      let     cycleSize     =     0  ;      let     j     =     i  ;      while     (  !  visited  [  j  ])     {      visited  [  j  ]     =     true  ;      j     =     t  [  j  ][  1  ];      cycleSize  ++  ;      }      // If there is a cycle we need (cycleSize - 1)      // swaps to sort the cycle      if     (  cycleSize     >     1  )     {      ans     +=     (  cycleSize     -     1  );      }      }      // Return total number of swaps      return     ans  ;   }   let     arr     =     [     5       6       7       8       9       10       11     ];   console  .  log  (  minSwaps  (  arr  ));   

Izvade
3  

Laika sarežģītība: O(n*logn) kur n ir elementu skaits masīvā.
Palīgtelpa: O(n), jo tas izmanto papildu vietu masīvam 

Vingrinājums: Vai mēs varam to attiecināt uz parastu bināro koku, t.i., bināro koku, kas attēlots, izmantojot kreiso un labo norādes un ne vienmēr ir pilnīgs?

Izveidojiet viktorīnu