Minimālo izmaksu ceļš ar atļautām kustībām pa kreisi, pa labi, uz leju un uz augšu

Minimālo izmaksu ceļš ar atļautām kustībām pa kreisi, pa labi, uz leju un uz augšu
Izmēģiniet to GfG praksē

Dots 2D režģa izmērs n*n kur katra šūna apzīmē izmaksas, lai pārvietotos caur šo šūnu, uzdevums ir atrast minimālās izmaksas lai pārvietotos no augšā pa kreisi šūnu uz apakšā pa labi šūna. No dotās šūnas mēs varam pārvietoties 4 virzieni : pa kreisi pa labi uz augšu uz leju.

Piezīme: Tiek pieņemts, ka ievades matricā nepastāv negatīvu izmaksu cikli.

Piemērs:

Ievade: režģis = {{9 4 9 9}
{6 7 6 4}
{8 3 3 7}
{7 4 9 10}}
Rezultāts: 43
Paskaidrojums: Minimālais izmaksu ceļš ir 9 + 4 + 7 + 3 + 3 + 7 + 10.

Pieeja:

Ideja ir izmantot Dijkstras algoritms lai atrastu minimālo izmaksu ceļu caur tīklu. Izmantojot šo pieeju, režģis tiek uzskatīts par grafiku, kurā katra šūna ir mezgls, un algoritms dinamiski pēta visrentablāko ceļu uz apakšējo labo šūnu, vienmēr vispirms paplašinot zemāko izmaksu ceļus.

Soli pa solim pieeja:

  1. Izmantojiet minimālo kaudzi, lai vienmēr vispirms apstrādātu viszemāko izmaksu ceļu un iebīdītu tajā augšējo kreiso šūnu.
  2. Inicializējiet izmaksu matricu ar maksimālajām vērtībām, iestatot sākuma šūnas izmaksas uz tās režģa vērtību.
  3. Katrai šūnai pārbaudiet visas 4 blakus esošās šūnas
    1. Ja tiek atrasts zemāku izmaksu ceļš, atjauniniet šūnas izmaksas un ievietojiet to kaudzē.
  4. Atgrieziet minimālās izmaksas, lai sasniegtu apakšējo labo šūnu.

Tālāk ir aprakstīta iepriekš minētās pieejas īstenošana.

C++
   // C++ program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   #include          using     namespace     std  ;   // Function to check if cell is valid.   bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i  >=  0     &&     i   <  n     &&     j  >=  0     &&     j   <  n  ;   }   int     minimumCostPath  (  vector   <  vector   <  int  >>     &  grid  )     {      int     n     =     grid  .  size  ();          // Min heap to implement dijkstra      priority_queue   <  vector   <  int  >           vector   <  vector   <  int  >>       greater   <  vector   <  int  >>>     pq  ;          // 2d grid to store minimum cost      // to reach every cell.      vector   <  vector   <  int  >>     cost  (  n       vector   <  int  >  (  n       INT_MAX  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      vector   <  vector   <  int  >>     dir     =     {{  -1    0  }     {  1    0  }     {  0    -1  }     {  0    1  }};          pq  .  push  ({  grid  [  0  ][  0  ]     0       0  });          while     (  !  pq  .  empty  ())     {      vector   <  int  >     top     =     pq  .  top  ();      pq  .  pop  ();          int     c     =     top  [  0  ]     i     =     top  [  1  ]     j     =     top  [  2  ];          // Check for all 4 neighbouring cells.      for     (  auto     d  :     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ]   <  cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]  +  grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  push  ({  cost  [  x  ][  y  ]     x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n  -1  ][  n  -1  ];   }   int     main  ()     {      vector   <  vector   <  int  >>     grid     =         {{  9    4    9    9  }{  6    7    6    4  }{  8    3    3    7  }{  7    4    9    10  }};          cout      < <     minimumCostPath  (  grid  )      < <     endl  ;          return     0  ;   }   
Java
   // Java program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   import     java.util.PriorityQueue  ;   import     java.util.Arrays  ;   class   GfG     {      // Function to check if cell is valid.      static     boolean     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  length  ;          // Min heap to implement Dijkstra      PriorityQueue   <  int  []>     pq     =         new     PriorityQueue   <>  ((  a       b  )     ->     Integer  .  compare  (  a  [  0  ]       b  [  0  ]  ));          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][  n  ]  ;      for     (  int  []     row     :     cost  )     {      Arrays  .  fill  (  row       Integer  .  MAX_VALUE  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ]  ;          // Direction vector to move in 4 directions      int  [][]     dir     =     {{  -  1       0  }     {  1       0  }     {  0       -  1  }     {  0       1  }};          pq  .  offer  (  new     int  []  {  grid  [  0  ][  0  ]       0       0  });          while     (  !  pq  .  isEmpty  ())     {      int  []     top     =     pq  .  poll  ();          int     c     =     top  [  0  ]       i     =     top  [  1  ]       j     =     top  [  2  ]  ;          // Check for all 4 neighbouring cells.      for     (  int  []     d     :     dir  )     {      int     x     =     i     +     d  [  0  ]  ;      int     y     =     j     +     d  [  1  ]  ;          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ]  )     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]  ;          // Push the cell into heap.      pq  .  offer  (  new     int  []  {  cost  [  x  ][  y  ]       x       y  });      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ]  ;      }      public     static     void     main  (  String  []     args  )     {      int  [][]     grid     =     {      {  9       4       9       9  }      {  6       7       6       4  }      {  8       3       3       7  }      {  7       4       9       10  }      };          System  .  out  .  println  (  minimumCostPath  (  grid  ));      }   }   
Python
   # Python program to find minimum Cost Path with    # Left Right Bottom and Up moves allowed   import   heapq   # Function to check if cell is valid.   def   isValidCell  (  i     j     n  ):   return   i   >=   0   and   i    <   n   and   j   >=   0   and   j    <   n   def   minimumCostPath  (  grid  ):   n   =   len  (  grid  )   # Min heap to implement Dijkstra   pq   =   []   # 2D grid to store minimum cost   # to reach every cell.   cost   =   [[  float  (  'inf'  )]   *   n   for   _   in   range  (  n  )]   cost  [  0  ][  0  ]   =   grid  [  0  ][  0  ]   # Direction vector to move in 4 directions   dir   =   [[  -  1     0  ]   [  1     0  ]   [  0     -  1  ]   [  0     1  ]]   heapq  .  heappush  (  pq     [  grid  [  0  ][  0  ]   0     0  ])   while   pq  :   c     i     j   =   heapq  .  heappop  (  pq  )   # Check for all 4 neighbouring cells.   for   d   in   dir  :   x     y   =   i   +   d  [  0  ]   j   +   d  [  1  ]   # If cell is valid and cost to reach this cell    # from current cell is less   if   isValidCell  (  x     y     n  )   and   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]    <   cost  [  x  ][  y  ]:   # Update cost to reach this cell.   cost  [  x  ][  y  ]   =   cost  [  i  ][  j  ]   +   grid  [  x  ][  y  ]   # Push the cell into heap.   heapq  .  heappush  (  pq     [  cost  [  x  ][  y  ]   x     y  ])   # Return minimum cost to    # reach bottom right cell.   return   cost  [  n   -   1  ][  n   -   1  ]   if   __name__   ==   '__main__'  :   grid   =   [   [  9     4     9     9  ]   [  6     7     6     4  ]   [  8     3     3     7  ]   [  7     4     9     10  ]   ]   print  (  minimumCostPath  (  grid  ))   
C#
   // C# program to find minimum Cost Path with    // Left Right Bottom and Up moves allowed   using     System  ;   using     System.Collections.Generic  ;   class     GfG     {      // Function to check if cell is valid.      static     bool     isValidCell  (  int     i       int     j       int     n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;      }      static     int     minimumCostPath  (  int  [][]     grid  )     {      int     n     =     grid  .  Length  ;          // Min heap to implement Dijkstra      var     pq     =     new     SortedSet   <  (  int     cost       int     x       int     y  )  >  ();          // 2D grid to store minimum cost      // to reach every cell.      int  [][]     cost     =     new     int  [  n  ][];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      cost  [  i  ]     =     new     int  [  n  ];      Array  .  Fill  (  cost  [  i  ]     int  .  MaxValue  );      }      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];          // Direction vector to move in 4 directions      int  [][]     dir     =     {     new     int  []     {  -  1       0  }     new     int  []     {  1       0  }         new     int  []     {  0       -  1  }     new     int  []     {  0       1  }     };          pq  .  Add  ((  grid  [  0  ][  0  ]     0       0  ));          while     (  pq  .  Count     >     0  )     {      var     top     =     pq  .  Min  ;      pq  .  Remove  (  top  );          int     i     =     top  .  x       j     =     top  .  y  ;          // Check for all 4 neighbouring cells.      foreach     (  var     d     in     dir  )     {      int     x     =     i     +     d  [  0  ];      int     y     =     j     +     d  [  1  ];          // If cell is valid and cost to reach this cell       // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&         cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {          // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];          // Push the cell into heap.      pq  .  Add  ((  cost  [  x  ][  y  ]     x       y  ));      }      }      }          // Return minimum cost to       // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];      }      static     void     Main  (  string  []     args  )     {      int  [][]     grid     =     new     int  [][]     {      new     int  []     {  9       4       9       9  }      new     int  []     {  6       7       6       4  }      new     int  []     {  8       3       3       7  }      new     int  []     {  7       4       9       10  }      };          Console  .  WriteLine  (  minimumCostPath  (  grid  ));      }   }   
JavaScript
   // JavaScript program to find minimum Cost Path with   // Left Right Bottom and Up moves allowed   function     comparator  (  a       b  )     {      if     (  a  [  0  ]     >     b  [  0  ])     return     -  1  ;      if     (  a  [  0  ]      <     b  [  0  ])     return     1  ;      return     0  ;   }   class     PriorityQueue     {      constructor  (  compare  )     {      this  .  heap     =     [];      this  .  compare     =     compare  ;      }      enqueue  (  value  )     {      this  .  heap  .  push  (  value  );      this  .  bubbleUp  ();      }      bubbleUp  ()     {      let     index     =     this  .  heap  .  length     -     1  ;      while     (  index     >     0  )     {      let     element     =     this  .  heap  [  index  ]      parentIndex     =     Math  .  floor  ((  index     -     1  )     /     2  )      parent     =     this  .  heap  [  parentIndex  ];      if     (  this  .  compare  (  element       parent  )      <     0  )     break  ;      this  .  heap  [  index  ]     =     parent  ;      this  .  heap  [  parentIndex  ]     =     element  ;      index     =     parentIndex  ;      }      }      dequeue  ()     {      let     max     =     this  .  heap  [  0  ];      let     end     =     this  .  heap  .  pop  ();      if     (  this  .  heap  .  length     >     0  )     {      this  .  heap  [  0  ]     =     end  ;      this  .  sinkDown  (  0  );      }      return     max  ;      }      sinkDown  (  index  )     {      let     left     =     2     *     index     +     1        right     =     2     *     index     +     2        largest     =     index  ;      if     (      left      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  left  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     left  ;      }      if     (      right      <     this  .  heap  .  length     &&      this  .  compare  (  this  .  heap  [  right  ]     this  .  heap  [  largest  ])     >     0      )     {      largest     =     right  ;      }      if     (  largest     !==     index  )     {      [  this  .  heap  [  largest  ]     this  .  heap  [  index  ]]     =     [      this  .  heap  [  index  ]      this  .  heap  [  largest  ]      ];      this  .  sinkDown  (  largest  );      }      }      isEmpty  ()     {      return     this  .  heap  .  length     ===     0  ;      }   }   // Function to check if cell is valid.   function     isValidCell  (  i       j       n  )     {      return     i     >=     0     &&     i      <     n     &&     j     >=     0     &&     j      <     n  ;   }   function     minimumCostPath  (  grid  )     {      let     n     =     grid  .  length  ;      // Min heap to implement Dijkstra      const     pq     =     new     PriorityQueue  (  comparator  )      // 2D grid to store minimum cost      // to reach every cell.      let     cost     =     Array  .  from  ({     length  :     n     }     ()     =>     Array  (  n  ).  fill  (  Infinity  ));      cost  [  0  ][  0  ]     =     grid  [  0  ][  0  ];      // Direction vector to move in 4 directions      let     dir     =     [[  -  1       0  ]     [  1       0  ]     [  0       -  1  ]     [  0       1  ]];      pq  .  enqueue  ([  grid  [  0  ][  0  ]     0       0  ]);      while     (  !  pq  .  isEmpty  ())     {      let     [  c       i       j  ]     =     pq  .  dequeue  ();      // Check for all 4 neighbouring cells.      for     (  let     d     of     dir  )     {      let     x     =     i     +     d  [  0  ];      let     y     =     j     +     d  [  1  ];      // If cell is valid and cost to reach this cell      // from current cell is less      if     (  isValidCell  (  x       y       n  )     &&     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ]      <     cost  [  x  ][  y  ])     {      // Update cost to reach this cell.      cost  [  x  ][  y  ]     =     cost  [  i  ][  j  ]     +     grid  [  x  ][  y  ];      // Push the cell into heap.      pq  .  enqueue  ([  cost  [  x  ][  y  ]     x       y  ]);      }      }      }      // Return minimum cost to      // reach bottom right cell.      return     cost  [  n     -     1  ][  n     -     1  ];   }   let     grid     =     [      [  9       4       9       9  ]      [  6       7       6       4  ]      [  8       3       3       7  ]      [  7       4       9       10  ]      ];   console  .  log  (  minimumCostPath  (  grid  ));   

Izvade
43  

Laika sarežģītība: O(n^2 log(n^2))
Palīgtelpa: O(n^2 log(n^2))

Kāpēc nevar izmantot dinamisko programmēšanu?

Dinamiskā programmēšana šeit neizdodas, jo, atļaujot kustību visos četros virzienos, tiek izveidoti cikli, kuros šūnas var atkārtoti apskatīt, pārkāpjot pieņēmumu par optimālo apakšstruktūru. Tas nozīmē, ka izmaksas, lai sasniegtu šūnu no noteiktās šūnas, nav fiksētas, bet ir atkarīgas no visa ceļa.

Saistītie raksti:

Minimālo izmaksu ceļš

Izveidojiet viktorīnu