Garākā atkārtotā un nepārklājošā apakšvirkne

Garākā atkārtotā un nepārklājošā apakšvirkne
Izmēģiniet to GfG Practice

Ņemot vērā a stīga s uzdevums ir atrast visilgāk atkārtojošā apakšvirkne, kas nepārklājas tajā. Citiem vārdiem sakot, atrast 2 identiskas apakšvirknes no maksimālais garums kas nepārklājas. Atgriež -1 ja šādas virknes nav.

Piezīme:  Ir iespējamas vairākas atbildes, bet mums ir jāatgriež apakšvirkne kuru  pirmā parādīšanās ir agrāk.

Piemēri:  

Ievade:  s = 'acdcdcdc'
Izvade: "AC/DC"
Paskaidrojums: Virkne 'acdc' ir s garākā apakšvirkne, kas atkārtojas, bet nepārklājas.

Ievade: s = 'geeksforgeeks'
Izvade: 'geeks'
Paskaidrojums: Virkne “geeks” ir s garākā apakšvirkne, kas atkārtojas, bet nepārklājas.

Satura rādītājs

Brutālā spēka metodes izmantošana - O(n^3) laiks un O(n) telpa

Ideja ir, lai ģenerēt viss iespējamās apakšvirknes un pārbaudiet, vai apakšvirkne pastāv atlikušais virkne. Ja apakšvirkne pastāv un tā garums ir lielāks nekā atbildes apakšvirkne, tad iestatiet atbildi uz pašreizējo apakšvirkni.

C++
   // C++ program to find longest repeating   // and non-overlapping substring   // using recursion   #include          using     namespace     std  ;   string     longestSubstring  (  string  &     s  )     {      int     n     =     s  .  length  ();      string     ans     =     ''  ;      int     len     =     0  ;      int     i     =     0       j     =     0  ;      while     (  i      <     n     &&     j      <     n  )     {      string     curr     =     s  .  substr  (  i       j     -     i     +     1  );      // If substring exists compare its length      // with ans      if     (  s  .  find  (  curr       j     +     1  )     !=     string  ::  npos         &&     j     -     i     +     1     >     len  )     {      len     =     j     -     i     +     1  ;      ans     =     curr  ;      }      // Otherwise increment i      else      i  ++  ;      j  ++  ;      }      return     len     >     0     ?     ans     :     '-1'  ;   }   int     main  ()     {      string     s     =     'geeksforgeeks'  ;      cout      < <     longestSubstring  (  s  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find longest repeating   // and non-overlapping substring   // using recursion   class   GfG     {      static     String     longestSubstring  (  String     s  )     {      int     n     =     s  .  length  ();      String     ans     =     ''  ;      int     len     =     0  ;      int     i     =     0       j     =     0  ;      while     (  i      <     n     &&     j      <     n  )     {      String     curr     =     s  .  substring  (  i       j     +     1  );      // If substring exists compare its length      // with ans      if     (  s  .  indexOf  (  curr       j     +     1  )     !=     -  1      &&     j     -     i     +     1     >     len  )     {      len     =     j     -     i     +     1  ;      ans     =     curr  ;      }      // Otherwise increment i      else      i  ++  ;      j  ++  ;      }      return     len     >     0     ?     ans     :     '-1'  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'geeksforgeeks'  ;      System  .  out  .  println  (  longestSubstring  (  s  ));      }   }   
Python
   # Python program to find longest repeating   # and non-overlapping substring   # using recursion   def   longestSubstring  (  s  ):   n   =   len  (  s  )   ans   =   ''   lenAns   =   0   i     j   =   0     0   while   i    <   n   and   j    <   n  :   curr   =   s  [  i  :  j   +   1  ]   # If substring exists compare its length   # with ans   if   s  .  find  (  curr     j   +   1  )   !=   -  1   and   j   -   i   +   1   >   lenAns  :   lenAns   =   j   -   i   +   1   ans   =   curr   # Otherwise increment i   else  :   i   +=   1   j   +=   1   if   lenAns   >   0  :   return   ans   return   '-1'   if   __name__   ==   '__main__'  :   s   =   'geeksforgeeks'   print  (  longestSubstring  (  s  ))   
C#
   // C# program to find longest repeating   // and non-overlapping substring   // using recursion   using     System  ;   class     GfG     {      static     string     longestSubstring  (  string     s  )     {      int     n     =     s  .  Length  ;      string     ans     =     ''  ;      int     len     =     0  ;      int     i     =     0       j     =     0  ;      while     (  i      <     n     &&     j      <     n  )     {      string     curr     =     s  .  Substring  (  i       j     -     i     +     1  );      // If substring exists compare its length      // with ans      if     (  s  .  IndexOf  (  curr       j     +     1  )     !=     -  1      &&     j     -     i     +     1     >     len  )     {      len     =     j     -     i     +     1  ;      ans     =     curr  ;      }      // Otherwise increment i      else      i  ++  ;      j  ++  ;      }      return     len     >     0     ?     ans     :     '-1'  ;      }      static     void     Main  (  string  []     args  )     {      string     s     =     'geeksforgeeks'  ;      Console  .  WriteLine  (  longestSubstring  (  s  ));      }   }   
JavaScript
   // JavaScript program to find longest repeating   // and non-overlapping substring   // using recursion   function     longestSubstring  (  s  )     {      const     n     =     s  .  length  ;      let     ans     =     ''  ;      let     len     =     0  ;      let     i     =     0       j     =     0  ;      while     (  i      <     n     &&     j      <     n  )     {      const     curr     =     s  .  substring  (  i       j     +     1  );      // If substring exists compare its length      // with ans      if     (  s  .  indexOf  (  curr       j     +     1  )     !==     -  1      &&     j     -     i     +     1     >     len  )     {      len     =     j     -     i     +     1  ;      ans     =     curr  ;      }      // Otherwise increment i      else      i  ++  ;      j  ++  ;      }      return     len     >     0     ?     ans     :     '-1'  ;   }   const     s     =     'geeksforgeeks'  ;   console  .  log  (  longestSubstring  (  s  ));   

Izvade
geeks  

Izmantojot no augšas uz leju DP (atgādināšana) — O(n^2) laiks un O(n^2) telpa

Pieeja ir aprēķināt garākais atkārtotais sufikss visiem prefiksiem pāri stīga s . Par indeksiem i un j ja s[i] == s[j] tad rekursīvi aprēķināt sufikss(i+1 j+1) un iestatīt sufikss(i j) min(sufikss(i+1 j+1) + 1 j - i - 1) uz novērst pārklāšanos . Ja rakstzīmes nesakrīt iestatīt sufiksu(i j) = 0.

Piezīme:

  • Lai izvairītos no pārklāšanās, mums ir jānodrošina, ka garums sufikss ir mazāks par (j-i) jebkurā mirklī. 
  • Maksimālā vērtība sufikss(i j) nodrošina garākās atkārtotās apakšvirknes garumu, un pašu apakšvirkni var atrast, izmantojot kopīgā sufiksa garumu un sākuma indeksu.
  • sufikss(i j) saglabā garākā kopīgā sufiksa garumu starp indeksiem i un j nodrošinot to nepārsniedz j - i - 1 lai izvairītos no pārklāšanās.
C++
   // C++ program to find longest repeating   // and non-overlapping substring   // using memoization   #include          using     namespace     std  ;   int     findSuffix  (  int     i       int     j       string     &  s           vector   <  vector   <  int  >>     &  memo  )     {      // base case      if     (  j     ==     s  .  length  ())      return     0  ;      // return memoized value      if     (  memo  [  i  ][  j  ]     !=     -1  )      return     memo  [  i  ][  j  ];      // if characters match      if     (  s  [  i  ]     ==     s  [  j  ])     {      memo  [  i  ][  j  ]     =     1     +     min  (  findSuffix  (  i     +     1       j     +     1       s       memo  )      j     -     i     -     1  );      }      else     {      memo  [  i  ][  j  ]     =     0  ;      }      return     memo  [  i  ][  j  ];   }   string     longestSubstring  (  string     s  )     {      int     n     =     s  .  length  ();      vector   <  vector   <  int  >>     memo  (  n       vector   <  int  >  (  n       -1  ));      // find length of non-overlapping      // substrings for all pairs (ij)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      findSuffix  (  i       j       s       memo  );      }      }      string     ans     =     ''  ;      int     ansLen     =     0  ;      // If length of suffix is greater      // than ansLen update ans and ansLen      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      if     (  memo  [  i  ][  j  ]     >     ansLen  )     {      ansLen     =     memo  [  i  ][  j  ];      ans     =     s  .  substr  (  i       ansLen  );      }      }      }      return     ansLen     >     0     ?     ans     :     '-1'  ;   }   int     main  ()     {      string     s     =     'geeksforgeeks'  ;      cout      < <     longestSubstring  (  s  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find longest repeating   // and non-overlapping substring   // using memoization   import     java.util.Arrays  ;   class   GfG     {      static     int     findSuffix  (  int     i       int     j       String     s        int  [][]     memo  )     {      // base case      if     (  j     ==     s  .  length  ())      return     0  ;      // return memoized value      if     (  memo  [  i  ][  j  ]     !=     -  1  )      return     memo  [  i  ][  j  ]  ;      // if characters match      if     (  s  .  charAt  (  i  )     ==     s  .  charAt  (  j  ))     {      memo  [  i  ][  j  ]     =     1      +     Math  .  min  (  findSuffix  (  i     +     1       j     +     1        s       memo  )      j     -     i     -     1  );      }      else     {      memo  [  i  ][  j  ]     =     0  ;      }      return     memo  [  i  ][  j  ]  ;      }      static     String     longestSubstring  (  String     s  )     {      int     n     =     s  .  length  ();      int  [][]     memo     =     new     int  [  n  ][  n  ]  ;      for     (  int  []     row     :     memo  )     {      Arrays  .  fill  (  row       -  1  );      }      // find length of non-overlapping      // substrings for all pairs (i j)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      findSuffix  (  i       j       s       memo  );      }      }      String     ans     =     ''  ;      int     ansLen     =     0  ;      // If length of suffix is greater      // than ansLen update ans and ansLen      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      if     (  memo  [  i  ][  j  ]     >     ansLen  )     {      ansLen     =     memo  [  i  ][  j  ]  ;      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }      }      return     ansLen     >     0     ?     ans     :     '-1'  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'geeksforgeeks'  ;      System  .  out  .  println  (  longestSubstring  (  s  ));      }   }   
Python
   # Python program to find longest repeating   # and non-overlapping substring   # using memoization   def   findSuffix  (  i     j     s     memo  ):   # base case   if   j   ==   len  (  s  ):   return   0   # return memoized value   if   memo  [  i  ][  j  ]   !=   -  1  :   return   memo  [  i  ][  j  ]   # if characters match   if   s  [  i  ]   ==   s  [  j  ]:   memo  [  i  ][  j  ]   =   1   +   min  (  findSuffix  (  i   +   1     j   +   1     s     memo  )    j   -   i   -   1  )   else  :   memo  [  i  ][  j  ]   =   0   return   memo  [  i  ][  j  ]   def   longestSubstring  (  s  ):   n   =   len  (  s  )   memo   =   [[  -  1  ]   *   n   for   _   in   range  (  n  )]   # find length of non-overlapping   # substrings for all pairs (i j)   for   i   in   range  (  n  ):   for   j   in   range  (  i   +   1     n  ):   findSuffix  (  i     j     s     memo  )   ans   =   ''   ansLen   =   0   # If length of suffix is greater   # than ansLen update ans and ansLen   for   i   in   range  (  n  ):   for   j   in   range  (  i   +   1     n  ):   if   memo  [  i  ][  j  ]   >   ansLen  :   ansLen   =   memo  [  i  ][  j  ]   ans   =   s  [  i  :  i   +   ansLen  ]   if   ansLen   >   0  :   return   ans   return   '-1'   if   __name__   ==   '__main__'  :   s   =   'geeksforgeeks'   print  (  longestSubstring  (  s  ))   
C#
   // C# program to find longest repeating   // and non-overlapping substring   // using memoization   using     System  ;   class     GfG     {      static     int     findSuffix  (  int     i       int     j       string     s        int  [     ]     memo  )     {      // base case      if     (  j     ==     s  .  Length  )      return     0  ;      // return memoized value      if     (  memo  [  i       j  ]     !=     -  1  )      return     memo  [  i       j  ];      // if characters match      if     (  s  [  i  ]     ==     s  [  j  ])     {      memo  [  i       j  ]     =     1      +     Math  .  Min  (  findSuffix  (  i     +     1       j     +     1        s       memo  )      j     -     i     -     1  );      }      else     {      memo  [  i       j  ]     =     0  ;      }      return     memo  [  i       j  ];      }      static     string     longestSubstring  (  string     s  )     {      int     n     =     s  .  Length  ;      int  [     ]     memo     =     new     int  [  n       n  ];      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     0  ;     j      <     n  ;     j  ++  )     {      memo  [  i       j  ]     =     -  1  ;      }      }      // find length of non-overlapping      // substrings for all pairs (i j)      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      findSuffix  (  i       j       s       memo  );      }      }      string     ans     =     ''  ;      int     ansLen     =     0  ;      // If length of suffix is greater      // than ansLen update ans and ansLen      for     (  int     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  int     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      if     (  memo  [  i       j  ]     >     ansLen  )     {      ansLen     =     memo  [  i       j  ];      ans     =     s  .  Substring  (  i       ansLen  );      }      }      }      return     ansLen     >     0     ?     ans     :     '-1'  ;      }      static     void     Main  (  string  []     args  )     {      string     s     =     'geeksforgeeks'  ;      Console  .  WriteLine  (  longestSubstring  (  s  ));      }   }   
JavaScript
   // JavaScript program to find longest repeating   // and non-overlapping substring   // using memoization   function     findSuffix  (  i       j       s       memo  )     {      // base case      if     (  j     ===     s  .  length  )      return     0  ;      // return memoized value      if     (  memo  [  i  ][  j  ]     !==     -  1  )      return     memo  [  i  ][  j  ];      // if characters match      if     (  s  [  i  ]     ===     s  [  j  ])     {      memo  [  i  ][  j  ]      =     1      +     Math  .  min  (  findSuffix  (  i     +     1       j     +     1       s       memo  )      j     -     i     -     1  );      }      else     {      memo  [  i  ][  j  ]     =     0  ;      }      return     memo  [  i  ][  j  ];   }   function     longestSubstring  (  s  )     {      const     n     =     s  .  length  ;      const     memo      =     Array  .  from  ({  length     :     n  }     ()     =>     Array  (  n  ).  fill  (  -  1  ));      // find length of non-overlapping      // substrings for all pairs (i j)      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      findSuffix  (  i       j       s       memo  );      }      }      let     ans     =     ''  ;      let     ansLen     =     0  ;      // If length of suffix is greater      // than ansLen update ans and ansLen      for     (  let     i     =     0  ;     i      <     n  ;     i  ++  )     {      for     (  let     j     =     i     +     1  ;     j      <     n  ;     j  ++  )     {      if     (  memo  [  i  ][  j  ]     >     ansLen  )     {      ansLen     =     memo  [  i  ][  j  ];      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }      }      return     ansLen     >     0     ?     ans     :     '-1'  ;   }   const     s     =     'geeksforgeeks'  ;   console  .  log  (  longestSubstring  (  s  ));   

Izvade
geeks  

Augšupvērsto DP izmantošana (tabulēšana) — O(n^2) laiks un O(n^2) telpa

Ideja ir, lai izveidot 2D matricu no izmērs (n+1)*(n+1) un aprēķiniet visilgāk atkārtojošos sufiksus visam indeksam pāri (i j) iteratīvi. Mēs sākam no beigas no virknes un strādājiet atpakaļ, lai aizpildītu tabulu. Katram (i j) ja s[i] == s[j] mēs uzstādām sufikss[i][j] līdz min (sufikss[i+1][j+1]+1 j-i-1) lai izvairītos no pārklāšanās; citādi sufikss [i][j] = 0.

C++
   // C++ program to find longest repeating   // and non-overlapping substring   // using tabulation   #include          using     namespace     std  ;   string     longestSubstring  (  string     s  )     {      int     n     =     s  .  length  ();      vector   <  vector   <  int  >>     dp  (  n  +  1       vector   <  int  >  (  n  +  1       0  ));          string     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (ij)      for     (  int     i  =  n  -1  ;     i  >=  0  ;     i  --  )     {      for     (  int     j  =  n  -1  ;     j  >  i  ;     j  --  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]  ==  s  [  j  ])     {      dp  [  i  ][  j  ]     =     1     +     min  (  dp  [  i  +  1  ][  j  +  1  ]     j  -  i  -1  );          if     (  dp  [  i  ][  j  ]  >=  ansLen  )     {      ansLen     =     dp  [  i  ][  j  ];      ans     =     s  .  substr  (  i       ansLen  );      }      }      }      }          return     ansLen  >  0  ?  ans  :  '-1'  ;   }   int     main  ()     {      string     s     =     'geeksforgeeks'  ;      cout      < <     longestSubstring  (  s  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find longest repeating   // and non-overlapping substring   // using tabulation   class   GfG     {      static     String     longestSubstring  (  String     s  )     {      int     n     =     s  .  length  ();      int  [][]     dp     =     new     int  [  n     +     1  ][  n     +     1  ]  ;          String     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >     i  ;     j  --  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  .  charAt  (  i  )     ==     s  .  charAt  (  j  ))     {      dp  [  i  ][  j  ]     =     1     +     Math  .  min  (  dp  [  i     +     1  ][  j     +     1  ]       j     -     i     -     1  );          if     (  dp  [  i  ][  j  ]     >=     ansLen  )     {      ansLen     =     dp  [  i  ][  j  ]  ;      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'geeksforgeeks'  ;      System  .  out  .  println  (  longestSubstring  (  s  ));      }   }   
Python
   # Python program to find longest repeating   # and non-overlapping substring   # using tabulation   def   longestSubstring  (  s  ):   n   =   len  (  s  )   dp   =   [[  0  ]   *   (  n   +   1  )   for   _   in   range  (  n   +   1  )]   ans   =   ''   ansLen   =   0   # find length of non-overlapping    # substrings for all pairs (i j)   for   i   in   range  (  n   -   1     -  1     -  1  ):   for   j   in   range  (  n   -   1     i     -  1  ):   # if characters match set value    # and compare with ansLen.   if   s  [  i  ]   ==   s  [  j  ]:   dp  [  i  ][  j  ]   =   1   +   min  (  dp  [  i   +   1  ][  j   +   1  ]   j   -   i   -   1  )   if   dp  [  i  ][  j  ]   >=   ansLen  :   ansLen   =   dp  [  i  ][  j  ]   ans   =   s  [  i  :  i   +   ansLen  ]   return   ans   if   ansLen   >   0   else   '-1'   if   __name__   ==   '__main__'  :   s   =   'geeksforgeeks'   print  (  longestSubstring  (  s  ))   
C#
   // C# program to find longest repeating   // and non-overlapping substring   // using tabulation   using     System  ;   class     GfG     {      static     string     longestSubstring  (  string     s  )     {      int     n     =     s  .  Length  ;      int  []     dp     =     new     int  [  n     +     1       n     +     1  ];          string     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     n     -     1  ;     j     >     i  ;     j  --  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]     ==     s  [  j  ])     {      dp  [  i       j  ]     =     1     +     Math  .  Min  (  dp  [  i     +     1       j     +     1  ]     j     -     i     -     1  );          if     (  dp  [  i       j  ]     >=     ansLen  )     {      ansLen     =     dp  [  i       j  ];      ans     =     s  .  Substring  (  i       ansLen  );      }      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;      }      static     void     Main  (  string  []     args  )     {      string     s     =     'geeksforgeeks'  ;      Console  .  WriteLine  (  longestSubstring  (  s  ));      }   }   
JavaScript
   // JavaScript program to find longest repeating   // and non-overlapping substring   // using tabulation   function     longestSubstring  (  s  )     {      const     n     =     s  .  length  ;      const     dp     =     Array  .  from  ({     length  :     n     +     1     }     ()     =>     Array  (  n     +     1  ).  fill  (  0  ));          let     ans     =     ''  ;      let     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  let     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  let     j     =     n     -     1  ;     j     >     i  ;     j  --  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]     ===     s  [  j  ])     {      dp  [  i  ][  j  ]     =     1     +     Math  .  min  (  dp  [  i     +     1  ][  j     +     1  ]     j     -     i     -     1  );          if     (  dp  [  i  ][  j  ]     >=     ansLen  )     {      ansLen     =     dp  [  i  ][  j  ];      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;   }   const     s     =     'geeksforgeeks'  ;   console  .  log  (  longestSubstring  (  s  ));   

Izvade
geeks  

Telpas optimizētā DP izmantošana – O(n^2) laiks un O(n) telpa

Ideja ir izmantot a viens 1D masīvs a vietā 2D matrica sekojot tikai 'nākamā rinda' aprēķināšanai nepieciešamās vērtības sufikss[i][j]. Tā kā katra vērtība s piedēklis[i][j] atkarīgs tikai no sufikss[i+1][j+1] zemāk esošajā rindā mēs varam saglabāt iepriekšējās rindas vērtības 1D masīvā un atjaunināt tās iteratīvi katrai rindai.

C++
   // C++ program to find longest repeating   // and non-overlapping substring   // using space optimised   #include          using     namespace     std  ;   string     longestSubstring  (  string     s  )     {      int     n     =     s  .  length  ();      vector   <  int  >     dp  (  n  +  1    0  );          string     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (ij)      for     (  int     i  =  n  -1  ;     i  >=  0  ;     i  --  )     {      for     (  int     j  =  i  ;     j   <  n  ;     j  ++  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]  ==  s  [  j  ])     {      dp  [  j  ]     =     1     +     min  (  dp  [  j  +  1  ]     j  -  i  -1  );          if     (  dp  [  j  ]  >=  ansLen  )     {      ansLen     =     dp  [  j  ];      ans     =     s  .  substr  (  i       ansLen  );      }      }      else     dp  [  j  ]     =     0  ;      }      }          return     ansLen  >  0  ?  ans  :  '-1'  ;   }   int     main  ()     {      string     s     =     'geeksforgeeks'  ;      cout      < <     longestSubstring  (  s  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find longest repeating   // and non-overlapping substring   // using space optimised   class   GfG     {      static     String     longestSubstring  (  String     s  )     {      int     n     =     s  .  length  ();      int  []     dp     =     new     int  [  n     +     1  ]  ;          String     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     i  ;     j      <     n  ;     j  ++  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  .  charAt  (  i  )     ==     s  .  charAt  (  j  ))     {      dp  [  j  ]     =     1     +     Math  .  min  (  dp  [  j     +     1  ]       j     -     i     -     1  );          if     (  dp  [  j  ]     >=     ansLen  )     {      ansLen     =     dp  [  j  ]  ;      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }     else     {      dp  [  j  ]     =     0  ;      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;      }      public     static     void     main  (  String  []     args  )     {      String     s     =     'geeksforgeeks'  ;      System  .  out  .  println  (  longestSubstring  (  s  ));      }   }   
Python
   # Python program to find longest repeating   # and non-overlapping substring   # using space optimised   def   longestSubstring  (  s  ):   n   =   len  (  s  )   dp   =   [  0  ]   *   (  n   +   1  )   ans   =   ''   ansLen   =   0   # find length of non-overlapping    # substrings for all pairs (i j)   for   i   in   range  (  n   -   1     -  1     -  1  ):   for   j   in   range  (  i     n  ):   # if characters match set value    # and compare with ansLen.   if   s  [  i  ]   ==   s  [  j  ]:   dp  [  j  ]   =   1   +   min  (  dp  [  j   +   1  ]   j   -   i   -   1  )   if   dp  [  j  ]   >=   ansLen  :   ansLen   =   dp  [  j  ]   ans   =   s  [  i  :  i   +   ansLen  ]   else  :   dp  [  j  ]   =   0   return   ans   if   ansLen   >   0   else   '-1'   if   __name__   ==   '__main__'  :   s   =   'geeksforgeeks'   print  (  longestSubstring  (  s  ))   
C#
   // C# program to find longest repeating   // and non-overlapping substring   // using space optimised   using     System  ;   class     GfG     {      static     string     longestSubstring  (  string     s  )     {      int     n     =     s  .  Length  ;      int  []     dp     =     new     int  [  n     +     1  ];          string     ans     =     ''  ;      int     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  int     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  int     j     =     i  ;     j      <     n  ;     j  ++  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]     ==     s  [  j  ])     {      dp  [  j  ]     =     1     +     Math  .  Min  (  dp  [  j     +     1  ]     j     -     i     -     1  );          if     (  dp  [  j  ]     >=     ansLen  )     {      ansLen     =     dp  [  j  ];      ans     =     s  .  Substring  (  i       ansLen  );      }      }     else     {      dp  [  j  ]     =     0  ;      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;      }      static     void     Main  (  string  []     args  )     {      string     s     =     'geeksforgeeks'  ;      Console  .  WriteLine  (  longestSubstring  (  s  ));      }   }   
JavaScript
   // JavaScript program to find longest repeating   // and non-overlapping substring   // using space optimised   function     longestSubstring  (  s  )     {      const     n     =     s  .  length  ;      const     dp     =     new     Array  (  n     +     1  ).  fill  (  0  );          let     ans     =     ''  ;      let     ansLen     =     0  ;          // find length of non-overlapping       // substrings for all pairs (i j)      for     (  let     i     =     n     -     1  ;     i     >=     0  ;     i  --  )     {      for     (  let     j     =     i  ;     j      <     n  ;     j  ++  )     {          // if characters match set value       // and compare with ansLen.      if     (  s  [  i  ]     ===     s  [  j  ])     {      dp  [  j  ]     =     1     +     Math  .  min  (  dp  [  j     +     1  ]     j     -     i     -     1  );          if     (  dp  [  j  ]     >=     ansLen  )     {      ansLen     =     dp  [  j  ];      ans     =     s  .  substring  (  i       i     +     ansLen  );      }      }     else     {      dp  [  j  ]     =     0  ;      }      }      }          return     ansLen     >     0     ?     ans     :     '-1'  ;   }   const     s     =     'geeksforgeeks'  ;   console  .  log  (  longestSubstring  (  s  ));   

Izvade
geeks  

Saistītie raksti: 

  • Garākā kopējā apakšvirkne