N-veida koka diametrs

N-veida koka diametrs

N-veida koka diametrs ir garākais ceļš starp jebkuriem diviem koka mezgliem. Šiem diviem mezgliem jābūt diviem lapu mezgliem. Tālāk norādītajos piemēros ir iekrāsots garākais ceļš[diametrs].

1. piemērs:

diametra


2. piemērs:  

diametrsN2

Priekšnosacījums: Binārā koka diametrs .
 
Ceļš var sākties no viena no mezgliem un iet uz augšu uz vienu no šo mezglu LCA un atkal nonākt līdz kāda cita apakškoka dziļākajam mezglam. vai var pastāvēt kā viena no pašreizējā mezgla atvasinātajām vērtībām. 

Risinājums pastāvēs jebkurā no šiem: 

  1. Diametrs vienam no pašreizējā mezgla bērniem 
  2.  Augstāko divu apakškoku augstuma summa + 1 

Īstenošana:

C++
   // C++ program to find the height of an N-ary   // tree   #include          using     namespace     std  ;   // Structure of a node of an n-ary tree   struct     Node   {      char     key  ;      vector   <  Node     *>     child  ;   };   // Utility function to create a new tree node   Node     *  newNode  (  int     key  )   {      Node     *  temp     =     new     Node  ;      temp  ->  key     =     key  ;      return     temp  ;   }   // Utility function that will return the depth   // of the tree   int     depthOfTree  (  struct     Node     *  ptr  )   {      // Base case      if     (  !  ptr  )      return     0  ;      int     maxdepth     =     0  ;      // Check for all children and find      // the maximum depth      for     (  vector   <  Node  *>::  iterator     it     =     ptr  ->  child  .  begin  ();      it     !=     ptr  ->  child  .  end  ();     it  ++  )      maxdepth     =     max  (  maxdepth          depthOfTree  (  *  it  ));      return     maxdepth     +     1  ;   }   // Function to calculate the diameter   // of the tree   int     diameter  (  struct     Node     *  ptr  )   {      // Base case      if     (  !  ptr  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      for     (  vector   <  Node  *>::  iterator     it     =     ptr  ->  child  .  begin  ();      it     !=     ptr  ->  child  .  end  ();     it  ++  )      {      int     h     =     depthOfTree  (  *  it  );      if     (  h     >     max1  )      max2     =     max1       max1     =     h  ;      else     if     (  h     >     max2  )      max2     =     h  ;      }      // Iterate over each child for diameter      int     maxChildDia     =     0  ;      for     (  vector   <  Node  *>::  iterator     it     =     ptr  ->  child  .  begin  ();      it     !=     ptr  ->  child  .  end  ();     it  ++  )      maxChildDia     =     max  (  maxChildDia       diameter  (  *  it  ));      return     max  (  maxChildDia       max1     +     max2     +     1  );   }   // Driver program   int     main  ()   {      /* Let us create below tree    * A    * / /      * B F D E    * /  | /|    * K J G C H I    * /     * N M L    */      Node     *  root     =     newNode  (  'A'  );      (  root  ->  child  ).  push_back  (  newNode  (  'B'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'F'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'D'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'E'  ));      (  root  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'K'  ));      (  root  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'J'  ));      (  root  ->  child  [  2  ]  ->  child  ).  push_back  (  newNode  (  'G'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'C'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'H'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'I'  ));      (  root  ->  child  [  0  ]  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'N'  ));      (  root  ->  child  [  0  ]  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'M'  ));      (  root  ->  child  [  3  ]  ->  child  [  2  ]  ->  child  ).  push_back  (  newNode  (  'L'  ));      cout      < <     diameter  (  root  )      < <     endl  ;      return     0  ;   }   
Java
   // Java program to find the height of an N-ary   // tree   import     java.util.*  ;   class   GFG   {   // Structure of a node of an n-ary tree   static     class   Node   {      char     key  ;      Vector   <  Node  >     child  ;   };   // Utility function to create a new tree node   static     Node     newNode  (  int     key  )   {      Node     temp     =     new     Node  ();      temp  .  key     =     (  char  )     key  ;      temp  .  child     =     new     Vector   <  Node  >  ();      return     temp  ;   }   // Utility function that will return the depth   // of the tree   static     int     depthOfTree  (  Node     ptr  )   {      // Base case      if     (  ptr     ==     null  )      return     0  ;      int     maxdepth     =     0  ;      // Check for all children and find      // the maximum depth      for     (  Node     it     :     ptr  .  child  )      maxdepth     =     Math  .  max  (  maxdepth        depthOfTree  (  it  ));      return     maxdepth     +     1  ;   }   // Function to calculate the diameter   // of the tree   static     int     diameter  (  Node     ptr  )   {      // Base case      if     (  ptr     ==     null  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      for     (  Node     it     :     ptr  .  child  )      {      int     h     =     depthOfTree  (  it  );      if     (  h     >     max1  )      {      max2     =     max1  ;      max1     =     h  ;      }      else     if     (  h     >     max2  )      max2     =     h  ;      }      // Iterate over each child for diameter      int     maxChildDia     =     0  ;      for     (  Node     it     :     ptr  .  child  )      maxChildDia     =     Math  .  max  (  maxChildDia           diameter  (  it  ));      return     Math  .  max  (  maxChildDia       max1     +     max2     +     1  );   }   // Driver Code   public     static     void     main  (  String  []     args  )   {      /* Let us create below tree    * A    * / /      * B F D E    * /  | /|    * K J G C H I    * /     * N M L    */      Node     root     =     newNode  (  'A'  );      (  root  .  child  ).  add  (  newNode  (  'B'  ));      (  root  .  child  ).  add  (  newNode  (  'F'  ));      (  root  .  child  ).  add  (  newNode  (  'D'  ));      (  root  .  child  ).  add  (  newNode  (  'E'  ));      (  root  .  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'K'  ));      (  root  .  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'J'  ));      (  root  .  child  .  get  (  2  ).  child  ).  add  (  newNode  (  'G'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'C'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'H'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'I'  ));      (  root  .  child  .  get  (  0  ).  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'N'  ));      (  root  .  child  .  get  (  0  ).  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'M'  ));      (  root  .  child  .  get  (  3  ).  child  .  get  (  2  ).  child  ).  add  (  newNode  (  'L'  ));      System  .  out  .  print  (  diameter  (  root  )     +     'n'  );   }   }   // This code is contributed by Rajput-Ji   
Python3
   # Python program to find the height of an N-ary   # tree   # Structure of a node of an n-ary tree   class   Node  :   def   __init__  (  self     x  ):   self  .  key   =   x   self  .  child   =   []   # Utility function that will return the depth   # of the tree   def   depthOfTree  (  ptr  ):   # Base case   if   (  not   ptr  ):   return   0   maxdepth   =   0   # Check for all children and find   # the maximum depth   for   it   in   ptr  .  child  :   maxdepth   =   max  (  maxdepth      depthOfTree  (  it  ))   return   maxdepth   +   1   # Function to calculate the diameter   # of the tree   def   diameter  (  ptr  ):   # Base case   if   (  not   ptr  ):   return   0   # Find top two highest children   max1     max2   =   0     0   for   it   in   ptr  .  child  :   h   =   depthOfTree  (  it  )   if   (  h   >   max1  ):   max2     max1   =   max1     h   elif   (  h   >   max2  ):   max2   =   h   # Iterate over each child for diameter   maxChildDia   =   0   for   it   in   ptr  .  child  :   maxChildDia   =   max  (  maxChildDia     diameter  (  it  ))   return   max  (  maxChildDia     max1   +   max2   +   1  )   # Driver program   if   __name__   ==   '__main__'  :   # /* Let us create below tree   # * A   # * / /     # * B F D E   # * /  | /|   # * K J G C H I   # * /    # * N M L   # */   root   =   Node  (  'A'  )   (  root  .  child  )  .  append  (  Node  (  'B'  ))   (  root  .  child  )  .  append  (  Node  (  'F'  ))   (  root  .  child  )  .  append  (  Node  (  'D'  ))   (  root  .  child  )  .  append  (  Node  (  'E'  ))   (  root  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'K'  ))   (  root  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'J'  ))   (  root  .  child  [  2  ]  .  child  )  .  append  (  Node  (  'G'  ))   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'C'  ))   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'H'  ))   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'I'  ))   (  root  .  child  [  0  ]  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'N'  ))   (  root  .  child  [  0  ]  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'M'  ))   (  root  .  child  [  3  ]  .  child  [  2  ]  .  child  )  .  append  (  Node  (  'L'  ))   print  (  diameter  (  root  ))   # This code is contributed by mohit kumar 29   
C#
   // C# program to find the height of    // an N-ary tree   using     System  ;   using     System.Collections.Generic  ;   class     GFG   {   // Structure of a node of an n-ary tree   class     Node   {      public     char     key  ;      public     List   <  Node  >     child  ;   };   // Utility function to create    // a new tree node   static     Node     newNode  (  int     key  )   {      Node     temp     =     new     Node  ();      temp  .  key     =     (  char  )     key  ;      temp  .  child     =     new     List   <  Node  >  ();      return     temp  ;   }   // Utility function that will return    // the depth of the tree   static     int     depthOfTree  (  Node     ptr  )   {      // Base case      if     (  ptr     ==     null  )      return     0  ;      int     maxdepth     =     0  ;      // Check for all children and find      // the maximum depth      foreach     (  Node     it     in     ptr  .  child  )      maxdepth     =     Math  .  Max  (  maxdepth        depthOfTree  (  it  ));      return     maxdepth     +     1  ;   }   // Function to calculate the diameter   // of the tree   static     int     diameter  (  Node     ptr  )   {      // Base case      if     (  ptr     ==     null  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      foreach     (  Node     it     in     ptr  .  child  )      {      int     h     =     depthOfTree  (  it  );      if     (  h     >     max1  )      {      max2     =     max1  ;      max1     =     h  ;      }      else     if     (  h     >     max2  )      max2     =     h  ;      }      // Iterate over each child for diameter      int     maxChildDia     =     0  ;      foreach     (  Node     it     in     ptr  .  child  )      maxChildDia     =     Math  .  Max  (  maxChildDia           diameter  (  it  ));      return     Math  .  Max  (  maxChildDia           max1     +     max2     +     1  );   }   // Driver Code   public     static     void     Main  (  String  []     args  )   {      /* Let us create below tree    * A    * / /      * B F D E    * /  | /|    * K J G C H I    * /     * N M L    */      Node     root     =     newNode  (  'A'  );      (  root  .  child  ).  Add  (  newNode  (  'B'  ));      (  root  .  child  ).  Add  (  newNode  (  'F'  ));      (  root  .  child  ).  Add  (  newNode  (  'D'  ));      (  root  .  child  ).  Add  (  newNode  (  'E'  ));      (  root  .  child  [  0  ].  child  ).  Add  (  newNode  (  'K'  ));      (  root  .  child  [  0  ].  child  ).  Add  (  newNode  (  'J'  ));      (  root  .  child  [  2  ].  child  ).  Add  (  newNode  (  'G'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'C'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'H'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'I'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  Add  (  newNode  (  'N'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  Add  (  newNode  (  'M'  ));      (  root  .  child  [  3  ].  child  [  2  ].  child  ).  Add  (  newNode  (  'L'  ));      Console  .  Write  (  diameter  (  root  )     +     'n'  );   }   }   // This code is contributed by Rajput-Ji   
JavaScript
    <  script  >   // Javascript program to find the   // height of an N-ary tree          // Structure of a node of an n-ary tree      class     Node  {          // Utility function to create a new tree node      constructor  (  key  )      {      this  .  key  =  key  ;      this  .  child  =  [];      }      }          // Utility function that will      // return the depth      // of the tree      function     depthOfTree  (  ptr  )      {      // Base case      if     (  ptr     ==     null  )      return     0  ;          let     maxdepth     =     0  ;          // Check for all children and find      // the maximum depth      for     (  let     it  =  0  ;  it   <     ptr  .  child  .  length  ;  it  ++  )          maxdepth     =     Math  .  max  (  maxdepth        depthOfTree  (  ptr  .  child  [  it  ]));          return     maxdepth     +     1  ;      }          // Function to calculate the diameter   // of the tree      function     diameter  (  ptr  )      {      // Base case      if     (  ptr     ==     null  )      return     0  ;          // Find top two highest children      let     max1     =     0       max2     =     0  ;      for     (  let     it  =  0  ;  it   <     ptr  .  child  .  length  ;  it  ++  )      {      let     h     =     depthOfTree  (  ptr  .  child  [  it  ]);      if     (  h     >     max1  )      {      max2     =     max1  ;      max1     =     h  ;      }      else     if     (  h     >     max2  )      max2     =     h  ;      }          // Iterate over each child for diameter      let     maxChildDia     =     0  ;      for     (  let     it  =  0  ;  it   <     ptr  .  child  .  length  ;  it  ++  )      maxChildDia     =     Math  .  max  (  maxChildDia        diameter  (  ptr  .  child  [  it  ]));          return     Math  .  max  (  maxChildDia       max1     +     max2     +     1  );      }          // Driver Code          /* Let us create below tree    * A    * / /      * B F D E    * /  | /|    * K J G C H I    * /     * N M L    */      let     root     =     new     Node  (  'A'  );      (  root  .  child  ).  push  (  new     Node  (  'B'  ));      (  root  .  child  ).  push  (  new     Node  (  'F'  ));      (  root  .  child  ).  push  (  new     Node  (  'D'  ));      (  root  .  child  ).  push  (  new     Node  (  'E'  ));      (  root  .  child  [  0  ].  child  ).  push  (  new     Node  (  'K'  ));      (  root  .  child  [  0  ].  child  ).  push  (  new     Node  (  'J'  ));      (  root  .  child  [  2  ].  child  ).  push  (  new     Node  (  'G'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'C'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'H'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'I'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  push  (  new     Node  (  'N'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  push  (  new     Node  (  'M'  ));      (  root  .  child  [  3  ].  child  [  2  ].  child  ).  push  (  new     Node  (  'L'  ));          document  .  write  (  diameter  (  root  )     +     'n'  );   // This code is contributed by patel2127    <  /script>   

Izvade
7 
  • Laika sarežģītība: O(N)
  • Telpas sarežģītība: O(N)

Iepriekšminētā risinājuma optimizācijas:   Mēs varam atrast diametru, neaprēķinot koka dziļumu, veicot nelielas izmaiņas iepriekš minētajā risinājumā, līdzīgi kā binārā koka diametra atrašanā.

Īstenošana:

C++
   // C++ program to find the height of an N-ary   // tree   #include          using     namespace     std  ;   // Structure of a node of an n-ary tree   struct     Node   {      char     key  ;      vector   <  Node     *>     child  ;   };   // Utility function to create a new tree node   Node     *  newNode  (  int     key  )   {      Node     *  temp     =     new     Node  ;      temp  ->  key     =     key  ;      return     temp  ;   }   int     diameter  (  struct     Node     *  ptr    int     &  diameter_of_tree  )   {      // Base case      if     (  !  ptr  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      for     (  vector   <  Node  *>::  iterator     it     =     ptr  ->  child  .  begin  ();  it     !=     ptr  ->  child  .  end  ();     it  ++  )      {      int     h     =     diameter  (  *  it    diameter_of_tree  );      if     (  h     >     max1  )      max2     =     max1       max1     =     h  ;      else     if     (  h     >     max2  )      max2     =     h  ;      }      // Find whether our node can be part of diameter      diameter_of_tree     =     max  (  max1     +     max2     +     1    diameter_of_tree  );      return     max  (  max1    max2  )     +     1  ;   }   int     main  ()   {      /* Let us create below tree    * A    * / /      * B F D E    * /  / /|    * K J G C H I    * / |    * N M L    */      Node     *  root     =     newNode  (  'A'  );      (  root  ->  child  ).  push_back  (  newNode  (  'B'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'F'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'D'  ));      (  root  ->  child  ).  push_back  (  newNode  (  'E'  ));      (  root  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'K'  ));      (  root  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'J'  ));      (  root  ->  child  [  2  ]  ->  child  ).  push_back  (  newNode  (  'G'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'C'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'H'  ));      (  root  ->  child  [  3  ]  ->  child  ).  push_back  (  newNode  (  'I'  ));      (  root  ->  child  [  0  ]  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'N'  ));      (  root  ->  child  [  0  ]  ->  child  [  0  ]  ->  child  ).  push_back  (  newNode  (  'M'  ));      (  root  ->  child  [  3  ]  ->  child  [  2  ]  ->  child  ).  push_back  (  newNode  (  'L'  ));          // for storing diameter      int     diameter_of_tree     =     0  ;          diameter  (  root    diameter_of_tree  );          cout      < <     diameter_of_tree      < <     endl  ;      return     0  ;   }   // This code is improved by bhuvan   
Java
   // Java program to find the height of an N-ary   // tree   import     java.util.*  ;   class   GFG     {      // Structure of a node of an n-ary tree      static     class   Node     {      char     key  ;      Vector   <  Node  >     child  ;      };      // Utility function to create a new tree node      static     Node     newNode  (  int     key  )      {      Node     temp     =     new     Node  ();      temp  .  key     =     (  char  )  key  ;      temp  .  child     =     new     Vector   <  Node  >  ();      return     temp  ;      }      // for storing diameter_of_tree      public     static     int     diameter_of_tree     =     0  ;      // Function to calculate the diameter      // of the tree      static     int     diameter  (  Node     ptr  )      {      // Base case      if     (  ptr     ==     null  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      for     (  Node     it     :     ptr  .  child  )     {      int     h     =     diameter  (  it  );      if     (  h     >     max1  )     {      max2     =     max1  ;      max1     =     h  ;      }      else     if     (  h     >     max2  )      max2     =     h  ;      }      diameter_of_tree      =     Math  .  max  (  max1     +     max2     +     1       diameter_of_tree  );      return     (  Math  .  max  (  max1       max2  )     +     1  );      }      // Driver Code      public     static     void     main  (  String  []     args  )      {      /* Let us create below tree    * A    * / /      * B F D E    * /  / /|    * K J G C H I    * / |    * N M L    */      Node     root     =     newNode  (  'A'  );      (  root  .  child  ).  add  (  newNode  (  'B'  ));      (  root  .  child  ).  add  (  newNode  (  'F'  ));      (  root  .  child  ).  add  (  newNode  (  'D'  ));      (  root  .  child  ).  add  (  newNode  (  'E'  ));      (  root  .  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'K'  ));      (  root  .  child  .  get  (  0  ).  child  ).  add  (  newNode  (  'J'  ));      (  root  .  child  .  get  (  2  ).  child  ).  add  (  newNode  (  'G'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'C'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'H'  ));      (  root  .  child  .  get  (  3  ).  child  ).  add  (  newNode  (  'I'  ));      (  root  .  child  .  get  (  0  ).  child  .  get  (  0  ).  child  )      .  add  (  newNode  (  'N'  ));      (  root  .  child  .  get  (  0  ).  child  .  get  (  0  ).  child  )      .  add  (  newNode  (  'M'  ));      (  root  .  child  .  get  (  3  ).  child  .  get  (  2  ).  child  )      .  add  (  newNode  (  'L'  ));      diameter  (  root  );      System  .  out  .  print  (  diameter_of_tree     +     'n'  );      }   }   // This code is improved by Bhuvan   
Python3
   # Python3 program to find the height of an N-ary   # tree   # Structure of a node of an n-ary tree   # Structure of a node of an n-ary tree   class   Node  :   # Utility function to create a tree node   def   __init__  (  self     key  ):   self  .  key   =   key  ;   self  .  child   =   [];   diameter_of_tree   =   0  ;   def   diameter  (  ptr  ):   global   diameter_of_tree   # Base case   # Base case   if   (  ptr   ==   None  ):   return   0  ;   # Find top two highest children   max1   =   0   max2   =   0  ;   for   it   in   range  (  len  (  ptr  .  child  )):   h   =   diameter  (  ptr  .  child  [  it  ]);   if   (  h   >   max1  ):   max2   =   max1   max1   =   h  ;   elif   (  h   >   max2  ):   max2   =   h  ;   # Find whether our node can be part of diameter   diameter_of_tree   =   max  (  max1   +   max2   +   1     diameter_of_tree  );   return   max  (  max1    max2  )   +   1  ;   def   main  ():      ''' us create below tree    * A    * / /      * B F D E    * /  / /|    * K J G C H I    * / |    * N M L    '''   root   =   Node  (  'A'  );   (  root  .  child  )  .  append  (  Node  (  'B'  ));   (  root  .  child  )  .  append  (  Node  (  'F'  ));   (  root  .  child  )  .  append  (  Node  (  'D'  ));   (  root  .  child  )  .  append  (  Node  (  'E'  ));   (  root  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'K'  ));   (  root  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'J'  ));   (  root  .  child  [  2  ]  .  child  )  .  append  (  Node  (  'G'  ));   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'C'  ));   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'H'  ));   (  root  .  child  [  3  ]  .  child  )  .  append  (  Node  (  'I'  ));   (  root  .  child  [  0  ]  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'N'  ));   (  root  .  child  [  0  ]  .  child  [  0  ]  .  child  )  .  append  (  Node  (  'M'  ));   (  root  .  child  [  3  ]  .  child  [  2  ]  .  child  )  .  append  (  Node  (  'L'  ));   diameter  (  root  );   print  (  diameter_of_tree  );   main  ()   # This code is contributed by phasing17.   
C#
   // C# program to find the height of an N-ary   // tree   using     System  ;   using     System.Collections.Generic  ;   // Structure of a node of an n-ary tree   class     Node     {      public     char     key  ;      public     List   <  Node  >     child  ;   };   class     GFG     {      // Utility function to create a new tree node      static     Node     newNode  (  int     key  )      {      Node     temp     =     new     Node  ();      temp  .  key     =     (  char  )  key  ;      temp  .  child     =     new     List   <  Node  >  ();      return     temp  ;      }      // for storing diameter_of_tree      public     static     int     diameter_of_tree     =     0  ;      // Function to calculate the diameter      // of the tree      static     int     diameter  (  Node     ptr  )      {      // Base case      if     (  ptr     ==     null  )      return     0  ;      // Find top two highest children      int     max1     =     0       max2     =     0  ;      foreach     (  Node     it     in     ptr  .  child  )     {      int     h     =     diameter  (  it  );      if     (  h     >     max1  )     {      max2     =     max1  ;      max1     =     h  ;      }      else     if     (  h     >     max2  )      max2     =     h  ;      }      diameter_of_tree      =     Math  .  Max  (  max1     +     max2     +     1       diameter_of_tree  );      return     (  Math  .  Max  (  max1       max2  )     +     1  );      }      // Driver Code      public     static     void     Main  (  string  []     args  )      {      /* Let us create below tree    * A    * / /      * B F D E    * /  / /|    * K J G C H I    * / |    * N M L    */      Node     root     =     newNode  (  'A'  );      (  root  .  child  ).  Add  (  newNode  (  'B'  ));      (  root  .  child  ).  Add  (  newNode  (  'F'  ));      (  root  .  child  ).  Add  (  newNode  (  'D'  ));      (  root  .  child  ).  Add  (  newNode  (  'E'  ));      (  root  .  child  [  0  ].  child  ).  Add  (  newNode  (  'K'  ));      (  root  .  child  [  0  ].  child  ).  Add  (  newNode  (  'J'  ));      (  root  .  child  [  2  ].  child  ).  Add  (  newNode  (  'G'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'C'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'H'  ));      (  root  .  child  [  3  ].  child  ).  Add  (  newNode  (  'I'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  )      .  Add  (  newNode  (  'N'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  )      .  Add  (  newNode  (  'M'  ));      (  root  .  child  [  3  ].  child  [  2  ].  child  )      .  Add  (  newNode  (  'L'  ));      diameter  (  root  );      Console  .  Write  (  diameter_of_tree     +     'n'  );      }   }   // This code is improved by phasing17   
JavaScript
   // Javascript program to find the height of an N-ary   // tree   // Structure of a node of an n-ary tree   // Structure of a node of an n-ary tree      class     Node  {          // Utility function to create a new tree node      constructor  (  key  )      {      this  .  key  =  key  ;      this  .  child  =  [];      }      }      let     diameter_of_tree     =     0  ;   function     diameter  (  ptr  )   {      // Base case      // Base case      if     (  ptr     ==     null  )      return     0  ;      // Find top two highest children      let     max1     =     0       max2     =     0  ;      for     (  let     it  =  0  ;  it   <     ptr  .  child  .  length  ;  it  ++  )      {      let     h     =     diameter  (  ptr  .  child  [  it  ]);      if     (  h     >     max1  )      max2     =     max1       max1     =     h  ;      else     if     (  h     >     max2  )      max2     =     h  ;      }      // Find whether our node can be part of diameter      diameter_of_tree     =     Math  .  max  (  max1     +     max2     +     1    diameter_of_tree  );      return     Math  .  max  (  max1    max2  )     +     1  ;   }      /* Let us create below tree    * A    * / /      * B F D E    * /  / /|    * K J G C H I    * / |    * N M L    */      let     root     =     new     Node  (  'A'  );      (  root  .  child  ).  push  (  new     Node  (  'B'  ));      (  root  .  child  ).  push  (  new     Node  (  'F'  ));      (  root  .  child  ).  push  (  new     Node  (  'D'  ));      (  root  .  child  ).  push  (  new     Node  (  'E'  ));      (  root  .  child  [  0  ].  child  ).  push  (  new     Node  (  'K'  ));      (  root  .  child  [  0  ].  child  ).  push  (  new     Node  (  'J'  ));      (  root  .  child  [  2  ].  child  ).  push  (  new     Node  (  'G'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'C'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'H'  ));      (  root  .  child  [  3  ].  child  ).  push  (  new     Node  (  'I'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  push  (  new     Node  (  'N'  ));      (  root  .  child  [  0  ].  child  [  0  ].  child  ).  push  (  new     Node  (  'M'  ));      (  root  .  child  [  3  ].  child  [  2  ].  child  ).  push  (  new     Node  (  'L'  ));          diameter  (  root    diameter_of_tree  );          console  .  log  (  diameter_of_tree  );      // This code is contributed by garg28harsh.   

Izvade

 7   
  • Laika sarežģītība: O(N^2)
  • Palīgtelpa: O(N+H) kur N ir mezglu skaits kokā un H ir koka augstums.

Cits optimizēts risinājums:  Garākais ceļš nevirzītā kokā

Vēl viena pieeja diametra iegūšanai DFS vienā pārgājienā:

Koka diametru var aprēķināt tāpat kā katram mezglam

  • Pašreizējais mezgls nav daļa no diametra (t.i., diametrs atrodas vienā no pašreizējā mezgla atvasinājumiem).
  • Pašreizējais mezgls ir daļa no diametra (t.i., diametrs iet caur pašreizējo mezglu).

Mezgls: Blakus esošo vietu saraksts ir izmantots koka uzglabāšanai.

Tālāk ir aprakstīta iepriekš minētās pieejas īstenošana.

C++
   // C++ implementation to find   // diameter of a tree using   // DFS in ONE TRAVERSAL   #include          using     namespace     std  ;   #define maxN 10005   // The array to store the   // height of the nodes   int     height  [  maxN  ];   // Adjacency List to store   // the tree   vector   <  int  >     tree  [  maxN  ];   // variable to store diameter   // of the tree   int     diameter     =     0  ;   // Function to add edge between   // node u to node v   void     addEdge  (  int     u       int     v  )   {      // add edge from u to v      tree  [  u  ].  push_back  (  v  );      // add edge from v to u      tree  [  v  ].  push_back  (  u  );   }   void     dfs  (  int     cur       int     par  )   {      // Variables to store the height of children      // of cur node with maximum heights      int     max1     =     0  ;      int     max2     =     0  ;      // going in the adjacency list of the current node      for     (  auto     u     :     tree  [  cur  ])     {          // if that node equals parent discard it      if     (  u     ==     par  )      continue  ;      // calling dfs for child node      dfs  (  u       cur  );      // calculating height of nodes      height  [  cur  ]     =     max  (  height  [  cur  ]     height  [  u  ]);      // getting the height of children      // of cur node with maximum height      if     (  height  [  u  ]     >=     max1  )     {      max2     =     max1  ;      max1     =     height  [  u  ];      }      else     if     (  height  [  u  ]     >     max2  )     {      max2     =     height  [  u  ];      }      }      height  [  cur  ]     +=     1  ;      // Diameter of a tree can be calculated as      // diameter passing through the node      // diameter doesn't includes the cur node      diameter     =     max  (  diameter       height  [  cur  ]);      diameter     =     max  (  diameter       max1     +     max2     +     1  );   }   // Driver Code   int     main  ()   {      // n is the number of nodes in tree      int     n     =     7  ;      // Adding edges to the tree      addEdge  (  1       2  );      addEdge  (  1       3  );      addEdge  (  1       4  );      addEdge  (  2       5  );      addEdge  (  4       6  );      addEdge  (  4       7  );      // Calling the dfs function to      // calculate the diameter of tree      dfs  (  1       0  );      cout      < <     'Diameter of tree is : '      < <     diameter     -     1       < <     '  n  '  ;      return     0  ;   }   
Java
   /*package whatever //do not write package name here */   import     java.io.*  ;   import     java.util.*  ;   class   GFG     {      static     int     maxN     =     10005  ;         // The array to store the      // height of the nodes      static     int  []     height     =     new     int  [  maxN  ]  ;      // Adjacency List to store      // the tree      static     ArrayList   <  ArrayList   <  Integer  >>     tree     =     new     ArrayList   <  ArrayList   <  Integer  >>  ();      // variable to store diameter      // of the tree      static     int     diameter     =     0  ;      // Function to add edge between      // node u to node v      static     void     addEdge  (  int     u       int     v  )      {      // add edge from u to v      tree  .  get  (  u  ).  add  (  v  );      // add edge from v to u      tree  .  get  (  v  ).  add  (  u  );      }      static     void     dfs  (  int     cur       int     par  )      {      // Variables to store the height of children      // of cur node with maximum heights      int     max1     =     0  ;      int     max2     =     0  ;      // going in the adjacency list of the current node      for     (  int     u     :     tree  .  get  (  cur  ))     {      // if that node equals parent discard it      if     (  u     ==     par  )      continue  ;      // calling dfs for child node      dfs  (  u       cur  );      // calculating height of nodes      height  [  cur  ]     =     Math  .  max  (  height  [  cur  ]       height  [  u  ]  );      // getting the height of children      // of cur node with maximum height      if     (  height  [  u  ]     >=     max1  )     {      max2     =     max1  ;      max1     =     height  [  u  ]  ;      }      else     if     (  height  [  u  ]     >     max2  )     {      max2     =     height  [  u  ]  ;      }      }      height  [  cur  ]     +=     1  ;      // Diameter of a tree can be calculated as      // diameter passing through the node      // diameter doesn't includes the cur node      diameter     =     Math  .  max  (  diameter       height  [  cur  ]  );      diameter     =     Math  .  max  (  diameter       max1     +     max2     +     1  );      }      public     static     void     main     (  String  []     args  )         {      for  (  int     i     =     0  ;     i      <     maxN  ;     i  ++  )      {      tree  .  add  (  new     ArrayList   <  Integer  >  ());         }      // n is the number of nodes in tree      int     n     =     7  ;      // Adding edges to the tree      addEdge  (  1       2  );      addEdge  (  1       3  );      addEdge  (  1       4  );      addEdge  (  2       5  );      addEdge  (  4       6  );      addEdge  (  4       7  );      // Calling the dfs function to      // calculate the diameter of tree      dfs  (  1       0  );      System  .  out  .  println  (  'Diameter of tree is : '     +  (  diameter     -     1  ));      }   }   // This code is contributed by ab2127.   
Python3
   # C++ implementation to find   # diameter of a tree using   # DFS in ONE TRAVERSAL   maxN   =   10005   # The array to store the   # height of the nodes   height   =   [  0   for   i   in   range  (  maxN  )]   # Adjacency List to store   # the tree   tree   =   [[]   for   i   in   range  (  maxN  )]   # variable to store diameter   # of the tree   diameter   =   0   # Function to add edge between   # node u to node v   def   addEdge  (  u     v  ):   # add edge from u to v   tree  [  u  ]  .  append  (  v  )   # add edge from v to u   tree  [  v  ]  .  append  (  u  )   def   dfs  (  cur     par  ):   global   diameter   # Variables to store the height of children   # of cur node with maximum heights   max1   =   0   max2   =   0   # going in the adjacency list of the current node   for   u   in   tree  [  cur  ]:   # if that node equals parent discard it   if  (  u   ==   par  ):   continue   # calling dfs for child node   dfs  (  u     cur  )   # calculating height of nodes   height  [  cur  ]   =   max  (  height  [  cur  ]   height  [  u  ])   # getting the height of children   # of cur node with maximum height   if  (  height  [  u  ]   >=   max1  ):   max2   =   max1   max1   =   height  [  u  ]   elif  (  height  [  u  ]   >   max2  ):   max2   =   height  [  u  ]   height  [  cur  ]   +=   1   # Diameter of a tree can be calculated as   # diameter passing through the node   # diameter doesn't includes the cur node   diameter   =   max  (  diameter     height  [  cur  ])   diameter   =   max  (  diameter     max1   +   max2   +   1  )   # Driver Code   # n is the number of nodes in tree   n   =   7   # Adding edges to the tree   addEdge  (  1     2  )   addEdge  (  1     3  )   addEdge  (  1     4  )   addEdge  (  2     5  )   addEdge  (  4     6  )   addEdge  (  4     7  )   # Calling the dfs function to   # calculate the diameter of tree   dfs  (  1     0  )   print  (  'Diameter of tree is :'     diameter   -   1  )   # This code is contributed by avanitrachhadiya2155   
C#
   using     System  ;   using     System.Collections.Generic  ;   class     GFG     {      static     int     maxN     =     10005  ;         // The array to store the      // height of the nodes      static     int  []     height     =     new     int  [  maxN  ];      // Adjacency List to store      // the tree      static     List   <  List   <  int  >>     tree     =     new     List   <  List   <  int  >>  ();      // variable to store diameter      // of the tree      static     int     diameter     =     0  ;      // Function to Add edge between      // node u to node v      static     void     AddEdge  (  int     u       int     v  )      {      // Add edge from u to v      tree  [  u  ].  Add  (  v  );      // Add edge from v to u      tree  [  v  ].  Add  (  u  );      }      static     void     dfs  (  int     cur       int     par  )      {      // Variables to store the height of children      // of cur node with maximum heights      int     max1     =     0  ;      int     max2     =     0  ;      // going in the adjacency list of the current node      foreach     (  int     u     in     tree  [  cur  ])     {      // if that node equals parent discard it      if     (  u     ==     par  )      continue  ;      // calling dfs for child node      dfs  (  u       cur  );      // calculating height of nodes      height  [  cur  ]     =     Math  .  Max  (  height  [  cur  ]     height  [  u  ]);      // getting the height of children      // of cur node with maximum height      if     (  height  [  u  ]     >=     max1  )     {      max2     =     max1  ;      max1     =     height  [  u  ];      }      else     if     (  height  [  u  ]     >     max2  )     {      max2     =     height  [  u  ];      }      }      height  [  cur  ]     +=     1  ;      // Diameter of a tree can be calculated as      // diameter passing through the node      // diameter doesn't includes the cur node      diameter     =     Math  .  Max  (  diameter       height  [  cur  ]);      diameter     =     Math  .  Max  (  diameter       max1     +     max2     +     1  );      }      public     static     void     Main     (  string  []     args  )         {      for  (  int     i     =     0  ;     i      <     maxN  ;     i  ++  )      {      tree  .  Add  (  new     List   <  int  >  ());         }      // n is the number of nodes in tree      int     n     =     7  ;      // Adding edges to the tree      AddEdge  (  1       2  );      AddEdge  (  1       3  );      AddEdge  (  1       4  );      AddEdge  (  2       5  );      AddEdge  (  4       6  );      AddEdge  (  4       7  );      // Calling the dfs function to      // calculate the diameter of tree      dfs  (  1       0  );      Console  .  WriteLine  (  'Diameter of tree is : '     +  (  diameter     -     1  ));      }   }   // This code is contributed by phasing17.   
JavaScript
    <  script  >   // Javascript implementation to find   // diameter of a tree using   // DFS in ONE TRAVERSAL   let     maxN     =     10005  ;   // The array to store the   // height of the nodes   let     height  =  new     Array  (  maxN  );   // Adjacency List to store   // the tree   let     tree  =  new     Array  (  maxN  );   for  (  let     i  =  0  ;  i   <  maxN  ;  i  ++  )   {      height  [  i  ]  =  0  ;      tree  [  i  ]  =  [];   }   // variable to store diameter   // of the tree   let     diameter     =     0  ;   // Function to add edge between   // node u to node v   function     addEdge  (  u    v  )   {      // add edge from u to v      tree  [  u  ].  push  (  v  );          // add edge from v to u      tree  [  v  ].  push  (  u  );   }   function     dfs  (  cur    par  )   {      // Variables to store the height of children      // of cur node with maximum heights      let     max1     =     0  ;      let     max2     =     0  ;          // going in the adjacency list       // of the current node      for     (  let     u  =  0  ;  u   <  tree  [  cur  ].  length  ;  u  ++  )     {          // if that node equals parent discard it      if     (  tree  [  cur  ][  u  ]     ==     par  )      continue  ;          // calling dfs for child node      dfs  (  tree  [  cur  ][  u  ]     cur  );          // calculating height of nodes      height  [  cur  ]     =     Math  .  max  (  height  [  cur  ]         height  [  tree  [  cur  ][  u  ]]);          // getting the height of children      // of cur node with maximum height      if     (  height  [  tree  [  cur  ][  u  ]]     >=     max1  )     {      max2     =     max1  ;      max1     =     height  [  tree  [  cur  ][  u  ]];      }      else     if     (  height  [  tree  [  cur  ][  u  ]]     >     max2  )     {      max2     =     height  [  tree  [  cur  ][  u  ]];      }      }          height  [  cur  ]     +=     1  ;          // Diameter of a tree can be calculated as      // diameter passing through the node      // diameter doesn't includes the cur node      diameter     =     Math  .  max  (  diameter       height  [  cur  ]);      diameter     =     Math  .  max  (  diameter       max1     +     max2     +     1  );   }   // Driver Code   // n is the number of nodes in tree   let     n     =     7  ;   // Adding edges to the tree   addEdge  (  1       2  );   addEdge  (  1       3  );   addEdge  (  1       4  );   addEdge  (  2       5  );   addEdge  (  4       6  );   addEdge  (  4       7  );   // Calling the dfs function to   // calculate the diameter of tree   dfs  (  1       0  );   document  .  write  (  'Diameter of tree is : '     +  (  diameter     -     1  ))       // This code is contributed by unknown2108    <  /script>   

Izvade
Diameter of tree is : 4 
  • Laika sarežģītība: O(N) Kur N ir mezglu skaits dotajā binārajā kokā.
  • Palīgtelpa: O(N)
Izveidojiet viktorīnu