N-Ary koka dziļums

N-Ary koka dziļums

Ņemot vērā an n-ārais koks satur pozitīvas mezgla vērtības, uzdevums ir atrast dziļums no koka.
Piezīme: An n-ārais koks ir koks, kurā var būt katrs mezgls nulle vai vairāk bērnu mezgli. Atšķirībā no binārā koka, kuram ir ne vairāk kā divi bērni vienā mezglā (pa kreisi un pa labi) n-ārais koks pieļauj vairākas filiāles vai bērni katram mezglam.

Piemēri:

Ievade:

otrs lielākais elements n-ārajā kokā-2

Izvade: 3
Paskaidrojums: Garākais ceļš no saknes (81. mezgls) līdz lapai ir 81 -> 26 -> 95 vai 81 -> 26 -> 86, kas nodrošina maksimālo dziļumu 3.

Ievade:

minimālā darbība, lai katras lapas mezgls būtu vienāds ar 2

Izvade: 2
Paskaidrojums: Garākais ceļš no saknes (mezgls 4) uz jebkuru lapu (mezgls 5 vai 7) ir 2, jo tam ir nepieciešami tikai divi šķērsošanas līmeņi.

Pieeja:

Ideja ir aprēķināt N-āru koka dziļums rekursīvi inicializēt maksimālais dziļums kā 0, tad rekursīvi aprēķiniet dziļums katram bērnam un sekojiet līdzi lielākais dziļums sastaptas. Visbeidzot pievienojiet 1 līdz maksimālajam dziļumam (pašreizējam mezglam) un atgrieziet rezultāts . Šī pieeja nodrošina, ka mēs atrodam garākais ceļš no saknes līdz jebkuram lapas mezglam.

N-Ary koku var šķērsot tāpat kā parastu koku. Mums vienkārši jāņem vērā visi noteiktā mezgla bērni un rekursīvi jāizsauc šī funkcija katrā mezglā. 

C++
   // C++ Code to find the depth of an N-ary tree   #include          using     namespace     std  ;   class     Node     {   public  :      int     data  ;      vector   <  Node  *>     children  ;      Node  (  int     val  )     {      data     =     val  ;      }   };   // Recursive function to calculate maximum depth   int     maxDepth  (  Node  *     root  )     {          // If the node is null depth is 0      if     (  !  root  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find the maximum depth      for     (  auto     child     :     root  ->  children  )     {      depth     =     max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node      // in the depth count      return     depth     +     1  ;   }   int     main  ()     {      // Representation of given N-ary tree      // 1      // / |     // 2 3 4      // /     // 5 6      Node  *     root     =     new     Node  (  1  );      root  ->  children  .  push_back  (  new     Node  (  2  ));      root  ->  children  .  push_back  (  new     Node  (  3  ));      root  ->  children  .  push_back  (  new     Node  (  4  ));      root  ->  children  [  0  ]  ->  children  .  push_back  (  new     Node  (  5  ));      root  ->  children  [  2  ]  ->  children  .  push_back  (  new     Node  (  6  ));      cout      < <     maxDepth  (  root  );      return     0  ;   }   
Java
   // Java Code to find the depth of an N-ary tree   import     java.util.*  ;   class   Node     {      int     data  ;      List   <  Node  >     children  ;      Node  (  int     val  )     {      data     =     val  ;      children     =     new     ArrayList   <>  ();      }   }   // Recursive function to calculate   // maximum depth   class   GfG     {          static     int     maxDepth  (  Node     root  )     {      // If the node is null depth is 0      if     (  root     ==     null  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find      // the maximum depth      for     (  Node     child     :     root  .  children  )     {      depth     =     Math  .  max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node       // in the depth count      return     depth     +     1  ;      }      public     static     void     main  (  String  []     args  )     {      // Representation of given N-ary tree      // 1      // / |       // 2 3 4      // /       // 5 6      Node     root     =     new     Node  (  1  );      root  .  children  .  add  (  new     Node  (  2  ));      root  .  children  .  add  (  new     Node  (  3  ));      root  .  children  .  add  (  new     Node  (  4  ));      root  .  children  .  get  (  0  ).  children  .  add  (  new     Node  (  5  ));      root  .  children  .  get  (  2  ).  children  .  add  (  new     Node  (  6  ));      System  .  out  .  println  (  maxDepth  (  root  ));      }   }   
Python
   # Python Code to find the depth    # of an N-ary tree   class   Node  :   def   __init__  (  self     val  ):   self  .  data   =   val   self  .  children   =   []   # Recursive function to calculate   # maximum depth   def   max_depth  (  root  ):   # If the node is None depth is 0   if   not   root  :   return   0   depth   =   0   # Recur for all children and    # find the maximum depth   for   child   in   root  .  children  :   depth   =   max  (  depth     max_depth  (  child  ))   # Add 1 to include the current   # node in the depth count   return   depth   +   1   if   __name__   ==   '__main__'  :   # Representation of given N-ary tree   # 1   # / |    # 2 3 4   # /    # 5 6   root   =   Node  (  1  )   root  .  children  .  append  (  Node  (  2  ))   root  .  children  .  append  (  Node  (  3  ))   root  .  children  .  append  (  Node  (  4  ))   root  .  children  [  0  ]  .  children  .  append  (  Node  (  5  ))   root  .  children  [  2  ]  .  children  .  append  (  Node  (  6  ))   print  (  max_depth  (  root  ))   
C#
   // C# Code to find the depth of an N-ary tree   using     System  ;   using     System.Collections.Generic  ;   class     Node     {      public     int     data  ;      public     List   <  Node  >     children  ;      public     Node  (  int     val  )     {      data     =     val  ;      children     =     new     List   <  Node  >  ();      }   }   // Recursive function to calculate   // maximum depth   class     GfG     {          static     int     MaxDepth  (  Node     root  )     {      // If the node is null depth is 0      if     (  root     ==     null  )     {      return     0  ;      }      int     depth     =     0  ;      // Recur for all children and find the maximum depth      foreach     (  Node     child     in     root  .  children  )     {      depth     =     Math  .  Max  (  depth       MaxDepth  (  child  ));      }      // Add 1 to include the current      // node in the depth count      return     depth     +     1  ;      }      static     void     Main  (  string  []     args  )     {      // Representation of given N-ary tree      // 1      // / |       // 2 3 4      // /       // 5 6      Node     root     =     new     Node  (  1  );      root  .  children  .  Add  (  new     Node  (  2  ));      root  .  children  .  Add  (  new     Node  (  3  ));      root  .  children  .  Add  (  new     Node  (  4  ));      root  .  children  [  0  ].  children  .  Add  (  new     Node  (  5  ));      root  .  children  [  2  ].  children  .  Add  (  new     Node  (  6  ));      Console  .  WriteLine  (  MaxDepth  (  root  ));      }   }   
JavaScript
   // JavaScript Code to find the depth    // of an N-ary tree   class     Node     {      constructor  (  val  )     {      this  .  data     =     val  ;      this  .  children     =     [];      }   }   // Recursive function to calculate    // maximum depth   function     maxDepth  (  root  )     {      // If the node is null depth is 0      if     (  !  root  )     {      return     0  ;      }      let     depth     =     0  ;      // Recur for all children and find      // the maximum depth      for     (  let     child     of     root  .  children  )     {      depth     =     Math  .  max  (  depth       maxDepth  (  child  ));      }      // Add 1 to include the current node       // in the depth count      return     depth     +     1  ;   }   // Representation of given N-ary tree   // 1   // / |    // 2 3 4   // /    // 5 6   const     root     =     new     Node  (  1  );   root  .  children  .  push  (  new     Node  (  2  ));   root  .  children  .  push  (  new     Node  (  3  ));   root  .  children  .  push  (  new     Node  (  4  ));   root  .  children  [  0  ].  children  .  push  (  new     Node  (  5  ));   root  .  children  [  2  ].  children  .  push  (  new     Node  (  6  ));   console  .  log  (  maxDepth  (  root  ));   

Izvade
3 

Laika sarežģītība: O(n), jo katrs mezgls tiek apmeklēts vienreiz, kur n ir kopējais mezglu skaits N-ārā kokā.
Palīgtelpa: O(h) kur h ir koka augstums rekursīvā izsaukuma steka lietošanas dēļ.

Izveidojiet viktorīnu